Exam 1

Combinatorics, Dave Bayer, October 4, 2011

Name: \qquad

[1] (5 pts)	[2] (5 pts)	[3] (5 pts)	[4] (5 pts)	[5] (5 pts)	[6] (5 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.
[1] How many integers in the sequence

$$
1,2,3,4, \ldots 718,719,720
$$

are not divisible by 4,5 , or 6 ?
[2] Count the number of ways of making change for n cents using pennies and nickels. Give a table of small values, and a generating function. For example, there are two ways of making change for 8 cents, namely

$$
1+1+1+1+1+1+1+1, \quad 1+1+1+5
$$

[3] Count the number of words using the letters 2 and 3 whose letters add up to n. Give a table of small values, and a recurrence relation. For example, there are four words that add up to 8, namely

$$
\text { 2222, } \quad 233, \quad 323, \quad 332 .
$$

[4] The Fibonacci sequence $\left\{\mathrm{F}_{\mathrm{n}}\right\}$ is defined by the recurrence relation

$$
F_{n}=F_{n-1}+F_{n-2}
$$

with initial values $F_{0}=0$ and $F_{1}=1$. Solve for the generating function

$$
G=\sum_{n=0}^{\infty} F_{n} t^{n}
$$

[5] Count the number of ways of making change for n cents using 5,6 , and 7 cent coins. Give your answer as a generating function. Of these, how many ways do not contain a way to make change for twelve cents? For example,

$$
5+5+5+5+5+5, \quad 6+6+6+6+6
$$

are two of the possible ways to make change for 30 cents, but one of them contains a way to make change for 12 cents.
[6] Approximately what fraction of all permutations of n letters have no fixed points? One fixed point? Two fixed points? If you keep going for k fixed points for each k, do your answers add up to one?

