Practice Problems

Combinatorics, Dave Bayer, November 10, 2011
[1] Prove Burnside's lemma: Let G be a finite group that acts on a finite set X. If X^{g} denotes the set of elements of X that are fixed by an element $g \in G$, then the number of orbits of this action is

$$
\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|
$$

[2] Demonstrate an example of the use of Burnside's lemma to solve a counting problem, taking into account symmetry.
[3] How many ways can we place two markers on a 5 by 5 checkerboard, up to rotational symmetry?
[4] How many different necklaces can be made from six beads, if three colors of beads are available, taking into account symmetry? (A necklace can be flipped and rotated.)
[5] How many ways can a five term product be fully parenthesized? For example, (ab)(c(de)) and $a(b(c(d e)))$ are two different ways to multiply together abcde. Relate this count to trees, and draw the trees.
[6] There are 16 labeled trees on four vertices. Draw them.
[7] A labeled tree on six vertices has the Prüfer sequence $\{4,4,4,5\}$. Draw the tree.
[8] A planar cubic graph is a graph that can be drawn in the plane, all of whose vertices have degree three. Find examples of planar cubic graphs on $4,6,8$ and 10 vertices. How many distinct graphs can you find?
[9] Find the smallest planar cubic graph that can be separated into two components by deleting two edges.
[10] Show that a planar cubic graph must have an even number of vertices.
[11] Show that a planar graph must have a vertex of degree five or less.
[12] Prove the six color theorem for planar graphs: Every planar graph has a proper vertex coloring using only six colors.
[13] Prove the five color theorem for planar graphs: Every planar graph has a proper vertex coloring using only five colors.

