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Solutions

1. Anne, Barbara, and Carol are the only contestants in a race. Anne
started last and during the race she swapped positions with other contes-
tants seven times, ending the race ahead of Barbara. Who won? (Prove
your answer).

Anne started in 3rd place. After an odd number of swaps, her position must
be even, so after 7 swaps Anne was in 2nd place. Barbara must have been
in 3rd place to be behind Anne, so Carol won.

2. Show that (1− xa)
1
a < (1− xb) 1

b for all x ∈ (0, 1) if 0 < a < b.

Since x < 1, xa > xb, so 1−xa < 1−xb. Then (1−xa)
1
a < (1−xb) 1

a since 1
a

is positive, and y
1
a is an increasing function of y. Next, (1−xb) 1

a < (1−xb) 1
b

since 1− xb < 1, so (1− xb)y is a decreasing function of y, and 1
b <

1
a . So

(1− xa)
1
a < (1− xb) 1

a < (1− xb) 1
b proving the claim.

3. Show that a polynomial p(x) of degree 2 which takes rational values at
3 rational values of x takes rational values at all rational x.

Let the points at which we know p is rational be x1, x2, and x3. Let
qk(x) = (x−xi)(x−xj)

(xk−xi)(xk−xj) where i, j, k = 1, 2, 3. Then qk(x) is a quadratic
polynomial with rational coefficients that has the value 1 at xk and 0 at the
other two points. p(x)−p(x1)q1(x)−p(x2)q2(x)−p(x3)q3(x) is a polynomial
of degree at most 2 which is 0 at 3 points, so p(x) = p(x1)q1(x)+p(x2)q2(x)+
p(x3)q3(x), which has rational coefficients. This argument is really just
reconstructing the Lagrange interpolation formula; the analogous argument
applies to a polynomial of degree n which has rational values at n+1 rational
points.



4. Give a necessary and sufficient condition for a 2 × 2 complex upper

triangular matrix
(
a b
0 d

)
to have an upper triangular square root.

The only such matrices without upper triangular square roots are non-zero

multiples of
(

0 1
0 0

)
. (

e f
0 h

)2

=
(
e2 f(e+ h)
0 h2

)
One can always find at least one square root, e for a and h for d. One can
then choose f to solve f(e + h) = b except if b is non-zero but e + h must
be 0. The only way that e+ h must equal 0 is if both a and d are 0.

5. Let s be an arc of the unit circle lying completely in the first quadrant
and of length 1. Let X be the area of the region bounded by the arc, the
x-axis and the vertical lines joining the endpoints of the arc to the x-axis.
Let Y be the area of the region bounded by the arc, the y-axis and the
horizontal lines joining the endpoints of the arc to the y-axis. Find X + Y .

The answer is 1, as can be shown by a calculus calculation, but one can
also do it without calculus. Draw a picture to make this clear: Let the
the ends of the arc be at P = (x1, y1) and Q = (x2, y2) with x1 < x2.
Denote A = (0, y1), B = (0, y2), C = (x1, 0), D = (x2, 0), O = (0, 0).
Let PQDC be short for the area of the region bounded by the arc PQ
and the lines QD,DC,CP (so PQDC = X) and similarly for PQBA = Y
etc. Then X = PQDC = OPQD − OPC = OPQ + OQD − OPC =
OPQ + OBQ − OPC. Similarly Y = PQBA = OPQ + OPC − OBQ, so
X + Y = 2OPQ = 2× 1

2 = 1.

6. Prove: If f is a real valued function, continuous on [0, 1] and continu-
ously differentiable on (0, 1), which vanishes at 0 and 1, then f ′(x) = f(x)
for some x in (0, 1). (Challenge: Show that the assumption that f ′ is con-
tinuous is not necessary.)

Consider g(x) = e−xf(x). g(0) = 0, g(1) = 0, and g is differentiable on
(0, 1), so by Rolle’s Theorem, for some c ∈ (0, 1), g′(c) = 0. 0 = g′(c) =
−e−cf(c) + e−cf ′(c) = e−c(f ′(c)− f(c)) so f(c) = f ′(c).

There are other proofs that use the continuity of f ′.



7. The vertices of a regular icosahedron are

(0,±1,±α), (±α, 0,±1), (±1,±α, 0).

Find all possible values of α. (The icosahedron is the regular polyhedron
with 20 triangular faces and 12 vertices.)

The possibilities are ±φ,±φ−1 where φ = 1+
√

5
2 . Suppose α > 0, since if α

produces a regular icosahedron, so does−α. The triangle (0, 1, α), (α, 0, 1), (1, α, 0)
is always equilateral. The other point on a triangle with (0, 1, α) and (1, α, 0)
may be either (0, 1,−α) or (−1, α, 0). In the first case, 4α2 = 1+(α−1)2+α2

which reduces to α2 = 1− α, satisfied by 1
φ , and all edges have length 2α.

In the second case, 1 + (α − 1)2 + α2 = 4 which reduces to α2 − α = 1,
satisfied by φ, and all edges have length 2.

8. What is the product of the lengths of all the “diagonals” of a regular
octagon inscribed in a circle of radius 1? (By a “diagonal” we mean any
segment connecting two distinct vertices, so the sides of the octagon are
also counted as “diagonals.”)

Let the points be the 8th roots of unity in the complex plane. Consider
the product of the diagonals such that one vertex is 1. This product is the
4th root of the product of all diagonals, since there are 8 vertices and each
diagonal connects 2 vertices.
Let ζ = e

iπ
4 . The length of the diagonal connecting ζk with 1 is |1 − ζk|.

We want to compute (1− ζ)(1− ζ2)...(1− ζ7).
(1− ζ4) = (1 + 1) = 2
(1− ζ2)(1− ζ6) = (1− i)(1 + i) = 2
(1− ζ1)(1− ζ5) = (1− ζ1)(1 + ζ1) = (1− ζ2)
(1− ζ3)(1− ζ7) = (1− ζ3)(1 + ζ3) = (1− ζ6)
So the product we want is |2×2×2| = 8, and the complete product is 84 =
212 = 4096. (Alternatively, to compute (1− ζ)(1− ζ2)...(1− ζ7) note that
(x−ζ)(x−ζ2)...(x−ζ7) is the cyclotomic polynomial x

8−1
x−1 = x7+. . .+x+1.)


