Homework 2 Solutions

1) Express A as a product of elementary matrices, where

$$
A=\left[\begin{array}{ll}
1 & 7 \\
1 & 1
\end{array}\right]
$$

sibtioct 7 (recon dion) from multiply firstron

$$
\left[\begin{array}{ll}
1 & 7 \\
1 & 1
\end{array}\right] \stackrel{1}{1}(1)-7(2)\left[\begin{array}{cc}
-6 & 0 \\
1 & 1
\end{array}\right] \stackrel{1}{1}+\frac{-1}{6}(1)\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

(2) \leftarrow (2) $-(1)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
perform row operations to ger to identity mats ix Then, do the opposite and rewrite as matrices

$$
\text { (2) } \leftarrow \text { (2) }+1
$$

the opposite of above (matres

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

what you did to get form A to I
rarcheek: $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\left[\left.\begin{array}{cc}d & -b \\ -c & a\end{array} \right\rvert\,\right.$

$$
\left[\begin{array}{cc}
-\frac{1}{6} & 0 \\
0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1 & 0 \\
0 & -\frac{1}{6}
\end{array}\right]_{-\frac{1}{b}}=\left[\begin{array}{cc}
-6 & 0 \\
0 & 1
\end{array}\right]
$$

$\rightarrow A=\left[\begin{array}{ll}1 & 7 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}-6 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$

* elementary matrix is one step away from identity, ie. differs by one elementary row operation eg. $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ yes! $\left[\begin{array}{cc}-5 & 0 \\ 0 & 1\end{array}\right]$ yes.' $\left[\begin{array}{cc}1 & 0 \\ 1000 & 1\end{array}\right]$ yes! $\left[\begin{array}{cc}\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$ no $\begin{array}{r}0 \\ \hline\end{array}$

$$
\begin{aligned}
& \text { (1) - (1)-7(2) } \\
& \text { (1) }-\frac{-1}{6}(1) \\
& {\left[\begin{array}{cc}
1 & -7 \\
0 & 1
\end{array}\right]} \\
& \rightarrow(1) \in(1)+7 \text { (2) } \\
& \left.\left[\begin{array}{ll}
1 & 7 \\
0 & 1
\end{array}\right] \stackrel{\text { है }}{-6} \begin{array}{cc}
0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

2) Find a system of equations having as solution set the following affine subspace of \mathbb{R}^{4}.
$\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{ll}0 & 3 \\ 1 & 2 \\ 2 & 1 \\ 3 & 0\end{array}\right]\left[\begin{array}{l}s \\ t\end{array}\right] \leftarrow$ i.e. $\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]$ is the particular solution and $\left.\left\lvert\, \begin{array}{ll}0 & 3 \\ 1 & 2 \\ 2 & 1 \\ 3 & 0\end{array}\right.\right]$ is the homogenous solution
First, find a matrix that mull. with $\left(\begin{array}{ll}0 & 3 \\ 1 & 2 \\ 2 & 1 \\ 3 & 0\end{array}\right)$ to give 0

One way to find this is to look at
$[0,12137$ and decide that this part $\left[\begin{array}{lll|l}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0\end{array}\right] \begin{aligned} & \text { and } \\ & \text { should be multiplied by the } \\ & \text { identity. }\end{aligned}$
Now, to find the other values, what numbers work that would satisfy both rows and make them multiply to get D ?

$$
1 . g . \quad 3 \cdot \begin{gathered}
\uparrow \\
-2 / 3
\end{gathered}
$$

$$
\left[\begin{array}{lll|l}
0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
-\frac{2}{3} \\
\hline & 1 \\
0 & 1 \\
-\frac{1}{3}
\end{array}\right]=0
$$

and similany, $\left[\begin{array}{lll}0 & 1 & 2 \\ 3 & 2 & 1\end{array}\right] 00\left[\begin{array}{cc}-\frac{2}{3} & -\frac{1}{3} \\ 1 & 0 \\ 1 & 1 \\ -\frac{1}{3} & -\frac{1}{3}\end{array}\right]=0$
So one such complementary matrix would be

$$
\left[\begin{array}{cccc}
2 & -3 & 0 & 1 \\
1 & 0 & -3 & 2
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=? ? ?
$$

(continued) \rightarrow

$$
\left[\begin{array}{cccc}
2 & -3 & 0 & -1 \\
1 & 0 & -3 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

$\rightarrow_{\text {a Solution: }}$

$$
\left[\begin{array}{cccc}
2 & -3 & 0 & 1 \\
1 & 0 & -3 & 2
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

Note: there are many more possible solutions 1.9. for the matrix complementary to
you could choose $\left[\begin{array}{ll}0 & 3 \\ 1 & 2 \\ 2 & 1 \\ 3 & 0\end{array}\right]$

* if your comply. sins are a linear comp. of these then they're ok!

$$
\begin{gathered}
\text { es. } \\
{\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
2 \\
-3 \\
0 \\
1
\end{array}\right]+\frac{1}{3}\left[\begin{array}{c}
1 \\
0 \\
-3 \\
2
\end{array}\right)}
\end{gathered}
$$

just proceed 2 here and then filled in what else was needed to work (sorry not systematic $\ddot{0}$)

* don't pick
$\left[\begin{array}{cc}1 & 1 \\ -1 & -1 \\ -1 & -1 \\ 1 & 1\end{array}\right] \begin{aligned} & \text { because these tho columns are the } \\ & \text { sarre, so don't give any new info } \rightarrow\end{aligned}\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right] s+\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right] t=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right] r$
sane thing with

$$
\left[\begin{array}{cc}
1 & -1 \\
-1 & 1 \\
-1 & 1 \\
1 & -1
\end{array}\right] \text { or }\left[\begin{array}{cc}
-\frac{2}{3} & 2 \\
1 & -3 \\
0 & 0 \\
-\frac{1}{3} & 1
\end{array}\right] \text { etc }
$$

\rightarrow then use that other matrix to find right hand side

$$
\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
-1 & -2 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
1 & -2 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-3
\end{array}\right]
$$

3) Find the intersection of the following two affine subspaces of \mathbb{R}^{4}
(1) $\quad\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ 2 \\ 1 \\ 1\end{array}\right]+\left[\begin{array}{ll}1 & 1 \\ 2 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]$
(2) $\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 3\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 3 & 0\end{array}\right]\left[\begin{array}{l}c \\ \alpha\end{array}\right]$

Solve for system of equations that has (1) as solution set, then plug (2) in Find comply, to homage.

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 2 & 1 & 0
\end{array}\right][?} \\
& \text { Right hand side }
\end{aligned}
$$

* for more detailed method/other ways to find comply. \sin, see problem \#2

$$
\begin{aligned}
& S\left[\begin{array}{cccc}
0 & 1 & -2 & 0 \\
1 & 0 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
3 \\
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cccc}
0 & 1 & -2 & 0 \\
1 & 0 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
\end{aligned}
$$

Plug (2) in here $\hat{}$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & 1 & -2 & 0 \\
1 & 0 & -1 & -1
\end{array}\right]\left(\left[\begin{array}{l}
2 \\
1 \\
1 \\
3
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0 \\
3 & 0
\end{array}\right]\binom{c}{d}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right.} \\
& {\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]+\left[\begin{array}{ll}
-2 & 1 \\
-3 & 0
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
& \left.\left\lvert\, \begin{array}{ll}
-2 & 1 \\
-3 & 0
\end{array}\right.\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \rightarrow \underset{\text { multiply both sides }}{\text { by }} \\
& \text { by nuvere of }\left[\begin{array}{ll}
-2 & 1 \\
-3 & 0
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
3 & -2
\end{array}\right] / \frac{1}{3}\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
1-3 \\
-3
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]
$$

$c=-1, d=-1 \rightarrow$ Plug these back into (2)

$$
\begin{aligned}
{\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{l}
2 \\
1 \\
1 \\
3
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 0 \\
3 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
1 \\
1 \\
3
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
-3
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]
\end{aligned}
$$

Another method: solve for system of equations that has (2) as solution set, then plug (1) in

Find comply, matrix to $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 3 & 0\end{array}\right]$
\sum sane steps as previous method
you'll end up with $a=-1, b=-1$, then ling into (1) to get solution

$$
\left\lceil\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Yet another method
Set the two equal to each other

$$
\begin{aligned}
& {\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
1 \\
3
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0 \\
3 & 0
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 1 & -1 & 0 \\
2 & 0 & 0 & -1 \\
1 & 0 & -1 & 0 \\
0 & 1 & -3 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
2
\end{array}\right] \Rightarrow\left[\begin{array}{cccc|c}
1 & 1 & -1 & 0 & -1 \\
2 & 0 & 0 & -1 & -1 \\
1 & 0 & -1 & 0 & 0 \\
0 & 1 & -3 & 0 & 2
\end{array}\right]} \\
& \text { Then row reduce } \\
& \longrightarrow(26-(2)-2(1) \\
& \text { (2) } 4 \text { (2) }-2(3) \\
& a=-1 \\
& -d=1 \\
& -b=1 \\
& L=-1 \\
& \begin{array}{cccc|cccccc|c}
1 & 0 & 0 & 0 & -1 & (4) \in-\frac{-1}{3}(3) & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 1 & \longleftrightarrow & 0 & 0 & -1 & 1 \\
0 & -1 & 0 & 0 & 1 & & 0 & -1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 & -3 & 0 & 3
\end{array}
\end{aligned}
$$

$\left[\begin{array}{l}a=-1 \\ b=-1\end{array}\right]$ then plug these back into (D) (2)

$$
\left.\begin{array}{l}
b=-1 \\
c=-1 \\
d=-1
\end{array}\right\},(1)\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

