Homework 3

Linear Algebra, Dave Bayer, due February 18, 2014

Name: \qquad Uni: \qquad

$[1]$	$[2]$	$[3]$	Total

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.
[1] Find the row space and the column space of the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 3 \\
1 & 3 & 4 \\
1 & 4 & 5
\end{array}\right]
$$

[2] Find a basis for the subspace V of \mathbb{R}^{4} spanned by the vectors

$$
(1,-2,1,0) \quad(0,1,-2,1) \quad(1,-1,-1,1) \quad(1,0,-3,2)
$$

Extend this basis to a basis for \mathbb{R}^{4}.
[3] Find a 3×3 matrix A which vanishes on the plane $x+y+2 z=0$, and is the identity on the vector $(2,3,4)$:

$$
A\left[\begin{array}{l}
\mathrm{p} \\
\mathrm{q} \\
\mathrm{r}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

for any vector (p, q, r) so $p+q+2 r=0$, and

$$
A\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
$$

