Homework 4

Linear Algebra, Dave Bayer, due February 25, 2014

Name: \qquad Uni: \qquad

$[1]$	$[2]$	$[3]$	Total

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.
[1] Find the 2×2 matrix A such that

$$
A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

[2] Find the 3×3 matrix A that projects orthogonally onto the line

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right] t
$$

[3] By least squares, find the equation of the form $y=a x+b$ which best fits the data

$$
\left(x_{1}, y_{1}\right)=(0,0), \quad\left(x_{2}, y_{2}\right)=(2,2), \quad\left(x_{3}, y_{3}\right)=(3,1)
$$

