## Homework 2

Combinatorics, Dave Bayer, Spring 2016
[1] Give a proof of Burnside's Lemma: If a group $G$ acts on a set of patterns $X$, then the number of distinct patterns up to symmetry is equal to the average number of patterns fixed by an element of the group:

$$
\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|
$$

[2] Up to rotation, how many necklaces have four red beads and four blue beads?
[3] Up to symmetry (rotations and flips), how many ways can one mark two cells of this figure?

[4] Up to symmetry (rotations and flips), how many ways can one mark three squares of this figure?

[5] Up to symmetry, how many ways can the six sides of a cube be colored red, green, or blue?

