Exam 2
Combinatorics, Dave Bayer, April 6-10, 2022
Please show all of your work. You will be graded for both your answers and your explanations. You need not complete the entire exam; the questions vary in difficulty.
[1] How many ways can we color the cells of a strip of n squares using at most k colors, counting two patterns as the same if one is a reversal of the other?
\square
\square
\square
\square
\square
\square
\square

$$
G=\{I d, \leftrightarrow\} \quad|G|=2
$$

Id k^{n}

[2] How many ways can we color the cells of this beehive using at most k colors, up to the dihedral group of rotations and flips? Confirm your answer for $k=2$, by finding all patterns up to symmetry.

$$
|G|=6 \cdot 2=12
$$

Id
1

k^{7}

$1 / 6+2 n^{2}$

$2 k^{2}$

$1 / 3 \operatorname{tun} 2$

$2 k^{3}$

$3 k^{5}$

 $3 k^{4}$
check $k=2$

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{7}$		$\mathbf{1 2}$	
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{1}$	total	count	/k
$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	4	3	1	12	1	1
$\mathbf{3}$	18	54	324	729	2,187	3,312	276	92
$\mathbf{4}$	32	128	1,024	3,072	16,384	20,640	1,720	430
$\mathbf{5}$	50	250	2,500	9,375	78,125	90,300	7,525	1,505

[3] How many ways can we color the edges of a cube using at most k colors, up to the group of rotational symmetries? Can you check your answer for $k=2$?

$$
1+6+8+6+3=24 \sigma
$$

identity halfiturn 2

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{1 2}$		$\mathbf{2 4}$
	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{1}$	total	count
$\mathbf{1}$	6	$\mathbf{8}$	3	6	1	24	1
$\mathbf{2}$	48	128	192	768	4,096	5,232	218
$\mathbf{3}$	162	648	2,187	13,122	531,441	547,560	22,815

https://oeis.org/A060530

One way to check $k=2$ is to count subsets of each size, up to symmetry. we can confirm the smaller counts by hand, and see they add pp.
 identity halfturne third turn 2 quaitertorn 2 half turns

0	1	1			1	1	1
1	12		2				
2	66	5		1			6
3	220		10		4		
4	495	10		5		3	15
5	792		20				
6	924	10		10	6		20
7	792		20				
8	495	5		10		3	15
9	220		10		4		
10	66	1		5			6
11	12		2				
12	1			1	1	1	1
	4,096	32	64	32	16	8	64

1	6	8	6	3
1	6	8	6	3
12	12	0	0	0
66	36	0	0	18
220	60	32	0	0
495	90	0	18	45
792	120	0	0	0
924	120	48	0	60
792	120	0	0	0
495	90	0	18	45
220	60	32	0	0
66	36	0	0	18
12	12	0	0	0
1	6	8	6	3
4,096	768	128	48	192

Total	Count
24	1
24	1
120	5
312	13
648	27
912	38
1,152	48
912	38
648	27
312	13
120	5
24	1
24	1
5,232	218

5 d
chiral pair
[4] Let $f(n)$ be the number of ways of dissecting an n-goo by at least one cut, up to the dihedral group of rotations and flips. As shown, $f(4)=1$ and $f(5)=2$. Find $f(6)$ two ways, by drawing the cases by hand and by using Burnside's lemma.

$$
f(6)=8
$$

$6+3=9 d$

$12+6+3=210$

$6+6+2=14$ or

$|G|=12$

1

Identity
 2
 12

$$
(44+2 \cdot 2+12+3 \cdot 2+3 \cdot 10) / 12=96 / 12=8 \text { d }
$$

[5] How many ways can we color the faces of a cube using at most k colors, up to the group of symmetries generated by rotations and reflections ("look in the mirror")?

There are 48 symmethes af the wee, including reflections.

(1) pick a corner
(8)
(2) pick an edge meeting that corner (3)
(3) pick a rotational direction (orientation) (2)
$8.3 .2=48$ we have studied the 24 rotations that preserve orientation.
It is harder to classify the 24 symmetries that reverse onentation:
some involve not one but 3 reflections!

1

6

quaitertorna
6

$$
1+6+8+6+3=24 \sigma
$$

3
For each rotation, we will also group faces by what happens in the mirror.

\rangle mirror swaps front and back faces, leaves sides alone

ratations
$3 k^{4}$

ABCDEF

$$
2 k^{5}+k^{3}
$$

half torn n 3

(ABCDCE
(AB)CD (EF)
rtations $k^{6}+6 k^{3}+8 k^{2}+6 k^{3}+3 k^{4}$
reflections $k^{5}+2 k^{4}+4 k^{2}+8 k+4 k^{4}+2 k^{2}+2 k^{5}+k^{3}$

$$
\left(8 k+14 k^{2}+13 k^{3}+9 k^{4}+3 k^{5}+k^{6}\right) / 48
$$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$		48
	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{9}$	$\mathbf{3}$	$\mathbf{1}$	total	count
$\mathbf{1}$	$\mathbf{8}$	14	13	9	3	1	48	1
$\mathbf{2}$	16	56	104	144	96	64	480	10
$\mathbf{3}$	24	126	351	729	729	729	2,688	56
$\mathbf{4}$	32	224	832	2,304	3,072	4,096	10,560	220
$\mathbf{5}$	40	350	1,625	5,625	9,375	15,625	32,640	680

https://oeis.org/A198833

