Möbius inversion and cyclotomic polynomials
For any poset, Mobbus inversion is inverse to partial sums:

One can carry out the inversion incrementally, correcting each partial sum by summing the values strictly above:

(The theory is identical if one is instead summing below.)
Partial sums is a linear map; Möbius inversion is its inverse:

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6}
\end{array}\right]=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
& 1 & 0 & 0 & 1 & 0 \\
& & 1 & 0 & 1 & 1 \\
& & & 1 & 0 & 1 \\
& & & & & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{cccccc}
0 & 0 & 1 & 0 & -1 & -1 \\
& 1 & 0 & 0 & -1 & 0 \\
& & 1 & 0 & -1 & -1 \\
& & & 1 & 0 & -1 \\
& & & & 1 & 0 \\
& & & & & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6}
\end{array}\right]
$$

sum all elements above (\geq)
möbius inversion

Each row of this inverse can be computed incrementally. Start with a 1 at the desired entry, then work up the poset so all coefficient partial sums below are zero.

Coefficients for x_{4} are $\left[\begin{array}{lllll}0 & 0 & 1 & 0 & -1\end{array}\right]$

Coefficients for x_{1} are $\left[\begin{array}{lllll}1-1 & -1 & -1 & 1\end{array}\right]$
We can use these coefficients to directly invert the partial sums:

In many applications one can find these coefficients by other means than direct matrix inversion.
For example, there are often homological ${ }^{*}$ methods.

Cyclotomic poly nomials
The $n^{\text {th }}$ roots of unity are the roots of $x^{n}-1=0$.
Each $x^{n}-1$ has a factornzation into distinct irreduable polynomials with integer csefficients, called cyclotomic polynomials.

$$
\begin{equation*}
x^{2}-1=(x-1)(x+1) \tag{2}
\end{equation*}
$$

$$
x^{3}-1=(x-1)\left(x^{2}+x+1\right)
$$

(4)

$$
\begin{equation*}
x^{4}-1=(x-1)(x+1)\left(x^{2}+1\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
x^{5}-1=(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) \tag{2}
\end{equation*}
$$

The divisor lattice of n is the poset of integer factors of n, partially ordered by divisibility.

As seen above, the cyclotomic polynomials that are factors of $x^{n}-1$ correspond to the elements of the diusor lattice. The polynomials $x-1$ for each factor d of n appear as partial products of the cyclotomic polynomials for each factor e of d, we recognize this as a form of möbiusinveriion, with sum replaced by product, and ascending rather man descending partial products:
multiply all elements
multiply all elements
(2) $(x+1)$

(3) $\left(x^{2}+x+1\right)$
below (\leq)
(3) $x^{3}-1$
(1) $(x-1)$
möbus inversion
(1) $x-1$

multiply all elements

(5) $x^{5}-1$
möbus inversion
(1) $x-1$

This gives effective algorithms for computing cyclotomic polynomials.

