Aligner, p242 Burnside's lemma
Counting with symmetry

$$
\sum_{x \in X}\left|G_{x}\right|=\sum_{g \in G}\left|X_{g}\right| .
$$

Lemma 6.1. Let $G$ act on $X$. Then for any $x \in X$,

$$
\begin{equation*}
|M(x)|=\frac{|G|}{\left|G_{X}\right|} . \tag{2}
\end{equation*}
$$

Lemma 6.2 (Burnside-Frobenius). Let the group $G$ act on $X$, and let $\mathcal{M}$ be the set of patterns. Then

$$
\begin{equation*}
|\mathcal{M}|=\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right| \tag{3}
\end{equation*}
$$

$X=$ raw set of objects
$G=$ symmetries acting on $X$
$M=$ patterns, equivalence classes of objects up to symmetry
$X_{g}=$ elements of $x$ fixed by $g \in G$

Example: $\quad X=$ length 2 lists from $\{a, b\}$

$$
\begin{aligned}
& X=\left\{\begin{array}{llll}
a, a & a, b & b, a & b, b
\end{array}\right\} \\
& M=\left\{\begin{array}{lll}
a, a & a, b & b, a \\
a, b
\end{array}\right\} \\
& \left.C a, a, d \quad C a, b_{k} b, a p\right] \\
& M=\text { "orbits" of action of } G \text { on } X
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{|G|} \sum_{g \in G}\left|x_{g}\right|=\frac{1}{2}\left(\left|X_{1}\right|+\left|X_{4+}\right|\right)=\frac{1}{2}(4+2)=3=|m|
\end{aligned}
$$

Example: $X=$ length 3 lists from $\{a, b, c\}$

$$
G=\{\underset{\underset{\text { dondhing }}{ }}{\substack{\text { filp } \\ \text { flip }}}\}
$$

$$
\begin{aligned}
& \text { Caab?baap Caac?caap Cbac~cabp } \\
& \text { Cabb } \underset{\sim}{\sim} b b a p \mid a b c \underset{\sim}{\sim} c b a p d b b c \underset{\sim}{\sim} c b b ? \\
& \text { Cacb }{ }_{\sim}^{\sim} b c a p \text { Cacc cap } \mathrm{Cbcc}
\end{aligned}
$$

Caaa? Cbab? Cacac?
Caba? Cbbb? C cbc?
Caca? ebcb? Cocc?

$$
\begin{aligned}
&|x|=27\left|x_{1}\right|=27 \\
&|G|=2\left|x_{4 t}\right|=9 \\
&|m|=18 \\
&\left.\frac{1}{1 G \mid} \sum_{g \in G}\left|x_{g}\right|=\frac{1}{2}\left(\left|x_{1}\right|+\left|x_{4+}\right|\right)=\frac{1}{2}(27+9)=18=\mid \mathrm{m}\right)
\end{aligned}
$$

Example: $\quad X=$ length $k$ lists from $\left\{a_{1}, \ldots, a_{n}\right\}$

$$
G=\left\{\frac{1}{\text { do nothing }} \underset{\substack{\text { flip }}}{\leftrightarrow \rightarrow}\right\}
$$

$$
\begin{aligned}
& |x|=n^{k}=\left|x_{1}\right| \\
& |G|=2 \\
& \left|x_{4}\right|=n^{\left[\frac{k}{2}\right]}
\end{aligned}
$$



$$
\begin{aligned}
\frac{1}{|G|} \sum_{g \in G}\left|x_{g}\right|=\frac{1}{2}\left(\left|x_{1}\right|+\left|x_{4}\right|\right) & =\frac{1}{2}\left(n^{k}+n^{\left[\frac{k}{2}\right]}\right)=|m| \\
n=k=2 & \frac{1}{2}\left(2^{2}+2\right)=3 \\
n=k=3 & \frac{1}{2}\left(3^{3}+3^{2}\right)=18
\end{aligned}
$$

Example: "Necklace" problems
Make an $n$-bead necklace using $k$ possible colors of beads Two patterns are the same if they agree after rotation. How many patterns?


For each $n$, there will be a version of the

$$
\text { Divisibility }=\text { more symmetry }
$$


 \$9 059 80 080



$$
\begin{aligned}
& |x|=\left|x_{1}\right|=k^{3} \\
& \left|x_{2}\right|=k \\
& \frac{1}{|G|} \sum_{g \in G}\left|x_{g}\right|=\frac{1}{3}\left(\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{6}\right|\right)=\frac{1}{3}\left(k^{3}+k+k\right)
\end{aligned}
$$

Check: $k=3 \quad \frac{1}{3}\left(k^{3}+k+k\right)=\frac{1}{3}(27+3+3)=11 \quad \square$

$$
\begin{aligned}
& |G|=4 \quad|x|=16=\left|x_{1}\right| \quad\left|x_{3}\right|=\left|x_{5}\right|=2 \quad\left|x_{0}\right|=4 \\
& \frac{1}{161} \sum_{g \in G}\left|x_{g}\right|=\frac{1}{4}\left(\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{d}\right|+\left|x_{d}\right|\right)=\frac{1}{4}(\mid 6+2+2+4)=6
\end{aligned}
$$

$$
\begin{aligned}
& |x|=\left|x_{1}\right|=k^{4}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& \left|x_{2}\right|=\left|x_{\curvearrowleft}\right|=K \\
& 0000 \rightarrow 0 \\
& \frac{1}{|G|} \sum_{g \in G}\left|x_{g}\right|=\frac{1}{4}\left(\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{\varsigma}\right|+\left|x_{\rho}\right|\right)=\frac{1}{4}\left(k^{4}+k+k+k^{2}\right)
\end{aligned}
$$

Check: $k=2 \quad \frac{1}{4}\left(k^{4}+k+k+k^{2}\right)=\frac{1}{4}(16+2+2+4)=6$ d

Why does this work?

$$
\frac{1}{|G|} \sum_{g \in G}\left|x_{g}\right|=|m|
$$





Each dot o marks an object fixed $b$ a group element. Each bax is a pattern up to symmetry.
The row sums are $\left|x_{1}\right|_{,}\left|x_{2}\right|,\left|x_{1}\right|,\left|x_{\Omega}\right|$.
If we can figure out why each box gets $|G|$ dots, we're done.
Group Theory in a nutshell: things divide up evenly. Look more closely at each orbit. This one is interesting:

$$
\left.\begin{array}{rl}
\{1, \Delta\}\} G O
\end{array} \underset{\{Q}{G}\right\}
$$

$$
G_{o-0}=\{1, \Omega\}=\text { elements of } G \text { that fix } 0 \text { oo }
$$

$$
\beth G_{\square-Q}=\beth\{1, \boxed{\Omega}\}=\{\underbrace{\square 1}_{\square}, \underbrace{\square \boxed{\square}}_{\boxed{\square}}\}=\{\beth, \boxed{\square}\}
$$

$$
|\{1, \Omega]|\left|\left\{\begin{array}{cc}
0-0 \\
0-0, & 0-0 \\
0-0
\end{array}\right\}\right|=|\{1, \boxed{,}, \Omega, \boxed{\Omega}\}|=|G|
$$

Combinatorics Feb23
What is a group? One operation $*$ or + Identity and inverses Associative: $\quad(a b) c=a(b c)$

$$
\begin{aligned}
& \mathbb{Z}_{5}: \begin{array}{l|lllll}
+ \\
\hline
\end{array} \begin{array}{llllll}
0 & 0 & 1 & 2 & 3 & 4 \\
0 & 1 & 1 & 2 & 3 & 4 \\
1 & 1 & 2 & 3 & 4 & 0 \\
2 & 2 & 3 & 4 & 0 & 1 \\
3 \\
3 & 3 & 4 & 0 & 1 & 2 \\
4 & 4 & 0 & 1 & 2 & 3
\end{array}
\end{aligned}
$$

Inverses $\Leftrightarrow$ Each row is a permutation of the first row Each col is a permutation of the first col

The symmetric group $S_{3}$ : Permutations of $\{1,2,3\}$ Symmetries of a triangle


How to multiply?


Identity


Inverses

$\mathrm{S}_{3}$ multiplication tables


Not commutative


Counting problem: Mark $k$ cells in a triangular grid How many patterns, upton $S_{3}$ symmetry?


$$
k=3
$$



$$
\begin{aligned}
& |P|=\frac{1}{|G|} \sum_{g \in G}\left|x_{g}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \left.k=2: \quad \frac{1}{6}\left[\binom{6}{2}+3\binom{(2}{1}+\binom{2}{2}\right)\right]=\frac{1}{6}(15+3 \cdot 3)=4 \\
& k=3: \quad \frac{1}{6}\left[\binom{6}{3}+2\binom{2}{1}+3\binom{2}{1}\binom{2}{1}\right]=\frac{1}{6}(20+2 \cdot 2+3 \cdot 4)=6
\end{aligned}
$$


$\sum_{g \in G}\left|x_{g}\right|$ counts all fixed points $(g, x)$ where $g x=x$
If we can understand why there are $|G|$ fixed points per orbit, then we understand $|P|=\frac{1}{|G|} \sum_{g \in G}\left|x_{g}\right|$

Look closely at how $G$ acts on a particular orbit


These subsets of $G$ (cosets) are always in 1:1 correspondence with each other, so they divide $G$ into equal sized subsets.
(\# Fixed points of $\& 8$ ) (size of orbit) $=|G|$

Quotients: mod out by "normal subgroup" \{ 10 , ar, $\}$


and we don't get a coherent table when we try to mod out.


Expand on class questions: Even-odd parity.


2


4


7


8


7

Walks alternate square colors


14


Walks between squares of the opposite color: odd \# steps

We can checkerboard the graph of all triangle positions.
Flips all change checkerboard color


We can checkerboard the graph of all permutations of $\{1, \ldots, n\}$
Euen-odd: How many pairs are out of order?
Adjacent pair swaps change this count by 1

$k$ colors $\quad|P|=\frac{1}{|G|} \sum_{g \in G}\left|x_{g}\right|=\frac{1}{6}\left(k^{6}+2 k^{2}+3 k^{4}\right)$


$$
\begin{aligned}
|P| & =\frac{1}{6}\left(k^{6}+2 k^{2}+3 k^{4}\right) \\
& =\frac{1}{6}(\underbrace{64+2 \cdot 4}_{12}+\underbrace{3 \cdot 16}_{8}) \\
& =20
\end{aligned}
$$



$$
k=3 \quad|P|=\frac{1}{6}\left(k^{6}+2 k^{2}+3 k^{4}\right)=\frac{1}{6}(729+2.9+3.81)=165
$$

use 1 color: 3
use 2 colors: ( $\left.\begin{array}{l}3 \\ 2\end{array}\right) 18$ (fro mabove)
$\Rightarrow$ use 3 colors: 165-3-( $\left.\begin{array}{l}3 \\ 2\end{array}\right) 18=108$
Not easily checked
(This way lies madness)

Let $S_{3}$ act on the colors, for this $|x|=108$
\& oz <compat>ᄋ $108 \quad \frac{1}{6}(108+2.2+3.4)=21$
FR



888 \{ \& \& \& \&
Now count orbit sizes by $S_{3}$ acting on colors

$\&^{6} \quad B^{6} \quad 8^{6} \quad b^{6} \&^{6}$
$\& b^{6} \quad \&^{6} \quad \&^{6} \quad \& b^{6} \quad \&^{6} \quad \&^{6} \quad \&^{6}$
$b^{2} \& b^{1} b^{3} \quad \& b^{6} \quad b^{6}$
more systematic way to get 21 ways to color $\&$ using 3 interchangeable colors up to triangle symmetries：

Let $G=S_{3} \times S_{3}$ ，group of pairs of actions of form 0 acting on triangle and then color choices

$$
|G|=\left|S_{3}\right|\left|S_{3}\right|=6 \cdot 6=36
$$

151


2 2 id
3 回
2 no

$$
3^{6}-3 \cdot 2^{6}+3=729-192+3=540
$$

$$
\text { none } \quad \frac{1}{36}(540+4 \cdot 9+3 \cdot 36+9 \cdot 8)=21
$$

$$
3 \cdot 3=9
$$

6 国
33 $\square$ 88

4 zones color using all 3 colors

$$
3^{4}-3 \cdot 2^{4}+3=81-48+3=36
$$



$$
\frac{2}{21} \frac{9}{36}
$$

Can we use inclusion-exclusion instead of Burnside's lemma? Need to consider poset of subgroups of $S_{3}$. Mäbius inversion.
$k$ colors $\quad|P|=\frac{1}{|G|} \sum_{g \in G}\left|x_{g}\right|=\frac{1}{6}\left(k^{6}+2 k^{2}+3 k^{4}\right)$


Better approach: Skip Möbius inversion to compute "exactly". Rather, when a pattern has $\delta$ versions, we want to count each one with weight $\%$. work up the poset, adjusting weights based on count so far from below,

$00 k$ colors $|P|=\frac{1}{|G|} \sum_{g \in G}\left|x_{g}\right|=\frac{1}{6}\left(k^{6}+2 k^{2}+3 k^{4}\right)$


This can be easier than Burnside's lemma.

Placing $k$ markers on an $n \times n$ board, up to symmetry.

$$
\begin{aligned}
& k=n=2 \quad|x|=\binom{4}{2}=6 \\
& k=2 \quad n=3 \quad|x|=\binom{9}{2}=36
\end{aligned}
$$




March 9, 2021 Counting with symmetries on polytopes.
symmetries of space
Linear Algebra who angle, length then add these $\langle f, g\rangle$ fog


$$
\begin{aligned}
& \text { symmetric group: permutations of }\{\backslash, \ldots, n\} \quad S_{n} \text { all }
\end{aligned}
$$

$$
\operatorname{se}^{x^{2}} \begin{array}{r}
\operatorname{erf}(x)
\end{array}
$$



$$
\text { all } v=(x, y, z)
$$

$$
x, y, z \geq 0
$$

$$
x+y+z=1
$$



$$
\binom{4}{2}=6
$$



$$
\binom{5}{2}=10
$$


mark it to destroy symmetry
count choices
4 choices of corner
$\frac{\times 3 \text { choices of edge meeting that conner }}{12}$

$$
\begin{aligned}
& a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \frac{\sqrt{a+b i}}{} \\
& \sqrt{\sqrt[3]{3}} \\
& =a-b c
\end{aligned}
$$



$$
\begin{aligned}
& \square \quad|G|=8 \\
& \left|S_{4}\right|=24 \\
& |G|=8 \cdot 3=24 \\
& \left|S_{8}\right|=8! \\
& |G|=20 \cdot 5 / 3=6 \\
& \mid G=A_{5}
\end{aligned}
$$

\#ways K-color faces of a tetrahedion up to symmeth

$$
|6|=12
$$



1 do nothing, dentity $8 \quad 1 / 3$ torns



March 11


I have posted plans for the above model on our website. The tetrahedron has in symmetnes:

(1) Choose a corner 4 choices

(2) choose anedge meeting that corner 3 choices
$G=$ group of symmetries of tetrahedron in $\mathbb{R}^{3}$ (we ignore flips through $\mathbb{R}^{4}$ )

$$
|G|=4.3 \quad 12
$$


$1 / 2$ torn axis through opposite edges

$$
1+2 \cdot 4+3=12 \Delta
$$

Burnside's lemma:

$$
\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right|
$$

Example: How many ways can we color the sides of a tetrahedron, up to symmetry, using $K$ colors?

$$
\begin{aligned}
& \text { - - }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \Delta \Delta \Delta \Delta \\
& \Delta A \Delta A A \\
& \Delta \Delta \Delta \Delta A \\
& \Delta \Delta \Delta \Delta \Delta
\end{aligned}
$$

$\otimes \Delta \Delta \Delta$
" $\Delta \Delta A \Delta A \Delta$ $\Delta \Delta \Delta \Delta \Delta \Delta$ ${ }^{\prime \prime} A \Delta \Delta \Delta \Delta \Delta$ ${ }^{2}{ }^{2} A \Delta \Delta \Delta A$ $\Delta \Delta \Delta \Delta \Delta \Delta$


This tells us that if we allow flips, we'll get

| $K$ | 1 | 2 | 3 | 4 |  |
| :--- | :---: | :---: | :---: | :---: | :--- |
| $G$ | 1 | 5 | 15 | 36 | (no flips) |
| $S_{4}$ | 1 | 5 | 15 | 35 | (flips in $\mathbb{R}^{4}$ ) |

$\left|S_{4}\right|=4!=24$ breaks up by cycle decomposition

$k^{4} \quad k^{2}$


$k^{2}$

even /odd


$$
\frac{1}{1 G \mid} \sum_{g \in G}\left|x_{g}\right|=\frac{1}{24}\left(k^{4}+6 k^{3}+11 k^{2}+6 k\right)
$$

$\left.\begin{array}{l|ccc|cccc|ccl}k & k^{2} & k^{3} & k^{4} & 6 k & 11 k^{2} & 6 k^{3} & k^{4} & \sum & \# \\ \hline 1 & 1 & 1 & 1 & 6 & 11 & 6 & 1 & 24 & 1 \\ 2 & 4 & 8 & 16 & 12 & 44 & 48 & 16 & 120 & 5 \\ 3 & 9 & 27 & 81 & 18 & 99 & 162 & 81 & 360 & 15 \\ 4 & 16 & 64 & 256 & 24 & 176 & 384 & 256 & 840 & 35\end{array}\right\}$ as before

Choosing subsets of faces is restricted version of 2 -coloring $\Rightarrow$ no chirality coloring vertices is dual to coloring faces, same problemColoring edges?Coloring everything?

Coloring edges:

$k^{6}$

$$
\begin{aligned}
& \frac{1}{|G|} \sum_{g \in G}\left|x_{g}\right|= \\
& \frac{1}{12}\left(k^{6}+3 k^{4}+8 k^{2}\right)
\end{aligned}
$$

Check: $k=2 \bigcirc 012$ id

| $k$ | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| $k^{2}$ | 1 | 4 | 9 |
| $k^{4}$ | 1 | 16 | 81 |
| $k^{6}$ | 1 | 6.4 | 729 |
| $8 k^{2}$ | 8 | 32 | 72 |
| $3 k^{4}$ | 3 | 48 | 243 |
| $k^{6}$ | 1 | 64 | 729 |
| $\sum$ | 12 | 144 | 1044 |
| $\#$ | 1 | 12 | 84 |



$$
\begin{aligned}
& A \\
& \Delta \Delta \quad \Delta \Delta \\
& \Delta \Delta \Delta \Delta \\
& \mathrm{HH} \mathrm{H} \\
& \text { Smo } \Delta \\
& \Delta \xrightarrow{2 \pi} \Delta \\
& 2 \times 20
\end{aligned}
$$

This tells us that including flips through $\mathbb{R}^{4}$, we should get 11 not 12 $\left|S_{4}\right|=4!=24$ breaks up by cycle decomposition

$k^{6}$

$k^{4}$

$k^{2}$

$$
\frac{1}{1 G \mid} \sum_{g \in G}\left|x_{g}\right|=\frac{1}{24}\left(k^{6}+9 k^{4}+14 k^{2}\right)
$$

| $k$ | $k^{2}$ | $k^{4}$ | $k^{6}$ | $14 k^{2}$ | $9 k^{4}$ | $k^{6}$ | $\Sigma$ | $\#$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 14 | 9 | 1 | 24 | 1 |
| 2 | 4 | 16 | 64 | 56 | 144 | 64 | 264 | 11 |



$k^{4}$

$k^{2}$

Symmetries of the cube

$G=$ group of symmetries of cube in $\mathbb{R}^{3}$
(we ignore flips through $\mathbb{R}^{4}$ )


$$
|G|=8 \cdot 3=24
$$

(1) Choose a corner
(2) choose anedge 8 choices meeting that corner 3 choices

Can we find these 24 symmetries?

identity 1
1

$1 / 2$ turn

6


3

$1 / 4$ turn
either way
6


8

This $G \approx S_{4}$. Imagine 4 diagonal sticks inside the abe.
Easier: Label opposite corners the same, using $\{1,2,3,4\}$ Every permutation is possible.
How many ways can we $k$-color the faces of a cube, up to symmetry?

identity 1
$k^{6}$

$1 / 2$ turn

$1 / 2$ turn


1/4 turn either way $6 k^{3}$

$1 / 3$ turn either way $8 k^{2}$

$$
\begin{aligned}
& \frac{1}{24}\left(k^{6}+3 k^{4}+12 k^{3}+8 k^{2}\right) \\
& k=2 \Rightarrow \frac{1}{24}(64+3 \cdot 16+12 \cdot 8+8 \cdot 4)=240 / 24=10
\end{aligned}
$$

Check $k=2: 0 \bigcirc 10$ D






最兆胃胃

Check that action of $S_{4}$ induces every symmetry of cube Four pairs af opposite corners, marked by 000 $S_{4}$ permutes these pairs
Every permutation corresponds to some rotation in space:

identity 1

$1 / 2$ turn
6


$1 / 2$ turn

$1 / 3$ turn either way 8


How many ways can we choose $k$ edges of a cube, up to symmetry?

identity 1


AD
$B \square$
c $\square$
D 0
ED D
F $\square$
GD D


A ロ
BD
c $\square \square$
D $\square$
ED D
FD D

6


Edges come prepackaged in bundles we need to make $k$ buying entire bundles

$$
k=2
$$

$$
\binom{12}{2}=66
$$

$$
\frac{1}{161} \sum_{g \in G}\left|x_{g}\right|=\frac{1}{24}(66+6 \cdot 6+3 \cdot 6)=\frac{120}{24}=5
$$


only way to use all four vertex colors

only way to use just two vertex
colors colors


Exam 2
Combinatorics, Dave Bayer, March 18-21, 2021
To receive full credit for correct answers, please show all work.
[1] How many ways can we choose three edges of a regular tetrahedron, up to rotational symmetry? Confirm your answer by finding all patterns up to symmetry.


$$
\binom{6}{3}=20
$$



A BCCDD

$$
2 \cdot 2=4 \quad 2
$$

$$
\frac{1}{12}(20+3 \cdot 4+8 \cdot 2)=48 / 12=4
$$

Check:

[2] How many ways can we $k$-color the six sides of a regular hexagon, up to rotational and flip symmetries? Confirm your answer for $k=2$, by finding all patterns up to symmetry.


2
1/6 turns
side flops
vertex flips

$k^{4}$

$$
\frac{1}{12}\left(k^{6}+3 k^{4}+4 k^{3}+2 k^{2}+2 k\right)
$$

$$
k=2: \frac{1}{12}\left(\begin{array}{c}
64+\underset{48}{3 \cdot 16}+\underset{32}{4 \cdot 8}+\underset{8}{2 \cdot 4}+\underset{4}{2 \cdot 2})=156 / 12=13
\end{array}\right.
$$

Check:

[3] How many ways can we choose two squares of a $4 \times 4$ board, up to rotational and flip symmetries? Confirm your answer by finding all patterns up to symmetry.


$$
|G|=4 \text { corners } \cdot 2 \text { edges }=8
$$



Identity
$\binom{16}{2}=8 \cdot 15=120$


1/2 turn 8


2

0

side flips
8

vertex flips
$(4)+6=12$

$$
\frac{1}{8}(120+8+\underset{16}{2 \cdot 8}+\underset{24}{2 \cdot 12})=168 / 8=21
$$

## Check:


[4] How many ways can we choose 2 or 3 faces of a regular dodecahedron up to rotational symmetry? Confirm your answers by finding all patterns up to symmetry.


12 pentagon faces
30 edges $5 \cdot 12 / 2$
20 vertices $5 \cdot 12 / 3$
choose vertex then edge

$$
|G|=20 \cdot 3=60
$$




Identity



15


20


24
Face turns A Ccccc B DDDDD

0
4

1

$$
\begin{array}{ll}
k=2 & \frac{1}{60}(66+15 \cdot 6+20 \cdot 0+24 \cdot 1)=180 / 60=3 \\
k=3 & \frac{1}{60}(220+15 \cdot 0+20 \cdot 4+24 \cdot 0)=300 / 60=5
\end{array}
$$

$k=2 \quad 3$

$k=3 \quad 5$

[5] How many ways can we choose two cubes from a $3 \times 3 \times 3$ array of 27 cubes, up to rotational symmetry? (This is not a Rubik's Cube. The symmetries are the 24 rotations we have studied of a solid cube.)


identity 1
1


$$
\begin{aligned}
\binom{27}{2} & =\frac{27.26}{2.1} \\
& =351
\end{aligned}
$$


$1 / 2$ turn
3

$1 / 4$ turn either way 6


3 cubes on axis 6 quads

$$
\left(\frac{3}{2}\right)=3
$$


$1 / 3$ turn either way 8


8 triplets $\left(\frac{3}{2}\right)=3$

$$
\frac{1}{24}(351+9 \cdot 15+14 \cdot 3)=528 / 24=22 \text { ways to pick two cubes }
$$

Check:


$$
3+7+2+5+3+2=22
$$

