MathSciNet
Mathematical Reviews
Previous | Up | Next

$$
\text { Citations } \quad \text { From References: } 236 \quad \text { From Reviews: } 26
$$

MR848681 (87i:32031) 32G15 14H15 57R20
Harer, J. [Harer, John Lester] (1-MD); Zagier, D. [Zagier, Don Bernard] (1-MD)
The Euler characteristic of the moduli space of curves.
Invent. Math. 85 (1986), no. 3, 457-485.
The moduli space of curves or Riemann surfaces S of genus g with n punctures is denoted by \mathcal{M}_{g}^{n} or \mathcal{M}_{g} when $n=0$. It may be expressed as the Teichmüller space \mathcal{T}_{g}^{n} or \mathcal{T}_{g} modulo the Teichmüller modular group, Mod. In the cases of interest here, $g \geq 1$ and $n=0,1$. Mod is generally the same as the mapping class group Γ_{g}^{n} of S-for $n=0,1$ the only exceptions are $g=1, n=1$ or $g=2$, and $n=0$. In the exceptional cases, Γ_{g}^{n} is the extension of Mod by the common hyperelliptic involution on all surfaces in \mathcal{T}_{g}^{n}. C . T. C. Wall[Proc. Cambridge Philos. Soc. 57 (1961), 182-184; MR0122853] introduced a rational Euler characteristic $\chi(G)$ for groups which, in the present situation, is the Euler characteristic $\chi(X) / m$, where $\chi(X)$ is the usual Euler characteristic of a finite sheeted cover of \mathcal{N}_{g}^{n} by a manifold given as \mathcal{T}_{g}^{n} modulo a fixed point free finite index subgroup Γ of Γ_{g}^{n}. m is then the index of Γ in Γ_{g}^{n}. Quillen showed how to compute $\chi(G)$ when it acts on a simplicial complex.

The main result in this paper is that $\chi\left(\Gamma_{g}^{1}\right)=\zeta(1-2 g)\left(=-B_{2 g} / 2 g\right)$. Here ζ is the Riemann zeta function and B denotes the Bernoulli number. The simplicial complex used is derived from a construction of Riemann surfaces due to Strebel. The Quillen-style computation is quite complicated, both combinatorially and analytically.

Using results of K . Brownand still more combinatorics, a formula is derived for the usual Euler characteristics e of both Γ_{g}^{1} and Γ_{g}. The formulas are too complicated to reproduce and explain here.

Recently, Penner has announced an alternative method for finding $\chi\left(\Gamma_{g}^{n}\right)$ for $n>0$.
\{See also the following review.\}
William Abikoff

