
INTRODUCTION TO 6 FUNCTOR FORMALISMS

CALEB JI

A six functor formalism naturally arises in various sheaf theories. Roughly speaking, it con-
sists of a collection of 6 functors on the derived category of sheaves on a space or spaces which
can be used to encode their cohomology. Isomorphisms between certain compositions of them
can express deep theorems, the central one being the Poincaré duality theorem1. Six functor
formalisms were originally developed in the context of coherent cohomology, étale cohomol-
ogy and cohomology of ordinary topological spaces by Grothendieck and his school. However,
its range of applicability is impressive: coherent cohomology, Betti cohomology, l-adic coho-
mology, D-modules, mixed Hodgemodules, etc. Grothendieck once explained that discovering
how this formalism held in both extreme cases of continuous coefficients (in coherent coho-
mology) and discrete coefficients (in étale cohomology) convinced him of their ubiquity in
geometric situations giving rise to duality theorems.

1. Étale cohomology

While we will work in the context of étale cohomology, all the essential features described
hold in other scenarios. For a similar discussion for (nice) topological spaces, see [Sch22],
Lecture 1.

1.1. Definition of the 6 functors. Let X be a scheme. Given an étale sheaf F on X, we
can thus encapsulate all the cohomology groups H i

ét(X,F) with the single derived functor
RΓ(X,−) : D(Xét) → D(Ab). More generally, given a morphism of schemes f : X → Y , we
can construct the derived functor Rf∗ : D(Xét) → D(Yét) as follows. We define

f∗F(U) := F(U ×Y X)

as an étale sheaf on Y . Then Rf∗ is the derived functor of f∗.

Warning: When working with derived categories, it is common to drop the ‘R’ in front of
Rf∗ and just use f∗ to denoteRf∗, because everything is assumed to be derived. We will follow
this convention from now on – everything is derived.

Now f∗ has a left adjoint: f∗ : D(Yét) → D(Xét). One may define it on the sheaf level as the
sheafification of the presheaf

P (U) := lim−→F(V )

over commutative diagrams
U V

X Y

etaleetale .

with structuremorphism f : X → Spec k. its cohomology groups canbewritten asΓ(Spec k,Rif∗F) ∼=
H i(X,F).

In the case Y = Spec k is a point, we can express the cohomology of X with constant co-
efficients very concisely with these functors as f∗f∗Z/l. More generally, we can view f∗ as a
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1To be clear, Poincaré duality here refers to the duality theorem in each instantiation of a 6 functor formalism,

the classical Poincaré duality being the one for manifolds.
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relative version of cohomology, in the sense that Rf∗F restricted to the points y ∈ Y are re-
lated to the cohomology of the fibers Xy. More precisely, for every cartesian square below,
there is a base change map g∗f∗ → f ′

∗g
′∗, which however is not always an isomorphism.

U X

V Y

f

g′

f ′

g

It is an isomorphism if F is torsion and f is proper, so this motivates the definition of f!. By
theNagata compactification theorem, if f is separated andof finite type, there is a factorization
f = p ◦ j where j is an open immersion and p is proper.

X X

Y

j

p
f

Then we define
f! := p∗j!,

where j! is extension by 0. The functor f! is known as proper pushforward, and if f is an open
immersion then f∗ is its right adjoint. In general f! does possess a right adjoint known as f !,
but its existence is quite non-trivial. However, if f is smooth of relative dimension d, then
f ! = f∗[2d](d).

Finally, the last two functors are given by derived tensor product and derived sheaf hom,
and they are adjoint as well:

Hom(A,Hom(B,C)) ∼= Hom(A⊗B,C).

1.2. Main properties. Together, these functors allow us to express several powerful results,
which we will now state. The standing assumptions are that f : X → Y is a morphism of
schemes, F ∈ D(Xét),G ∈ D(Yét) are torsion sheaves.

(1) (Proper base change) In the cartesian square below, the natural base change morphism

g∗f!F → f ′
! g

′∗F
is an isomorphism.

U X

V Y

f

g′

f ′

g

(2) (Projection formula) The natural morphism

f!F ⊗ G → f!(F ⊗ f∗G)
is an isomorphism. If we replace f! with f∗, such a morphism always exists by adjunc-
tion. Indeed, it is adjoint to the map

f∗(f∗F ⊗ G) ∼= f∗f∗F ⊗ f∗G → F ⊗ f∗G.
(3) (Künneth formula) There is a natural isomorphism

RΓc(X,F)⊗RΓc(Y,G) ∼= RΓc(X × Y,F ⊠ G).

X × Y X

Y ∗

p2

p1

pX

pY

p
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This is a formal consequence of the previous two results.

Proof. We have

p!(F ⊠ G) = pX!p1!(p
∗
1F ⊗ p∗2G) ∼= pX!(F ⊗ p1!p

∗
2G) ∼= pX!(F ⊗ p∗XpY !G) ∼= pX!F ⊗ pY !G.

□

(4) (Poincaré duality) The functors (f!, f !) form an adjoint pair, and we have a natural iso-
morphism

f∗HomX(F , f !G)
∼=−→ HomY (f!F ,G).

Applying this to f : X → Spec kwhereX is smooth of dimension d and k is algebraically
closed, we recall that in this case f !Z/l ∼= Z/l[2d](d), and (modulo some details) we
obtain the classical statement thatH i(X,F∨) ∼= H2d−i

c (X,F)∨.

2. Modern formulation

The six functors formalism has not only been developed over different cohomology the-
ories, but also over many different kinds of spaces, from topological spaces to schemes to
stacks to rigid analytic spaces. In [Sch22], Scholze presents some unifying guidelines using
∞-categories that gives a very general framework for working with them. Here are some of the
features of this approach.

• GivenX a geometric object,D(X) is treated as a stable∞-category.
• Proving the duality theorem in different situations is generally difficult and heavily
uses aspects specific to the scenario. However, some important common steps are iden-
tified and accomplished in this general framework.

• The six functors constructed satisfy various isomorphisms (mentioned in the previous
section for étale cohomology), along with compatibility relations between these iso-
morphisms.

• These compatibilities are encoded as coherences, which are dealt with by∞-categories.
• In particular, Mann presents the following approach in his thesis [Man22]. One begins
with a category (ordinary, or ∞-) C and an appropriate class of morphisms E, and
constructs a symmetric monoidal∞-category (C,E) of correspondences.

• One defines a 3-functor formalism as a lax symmetric monoidal functor

D : (C,E) → ∞− Cat.
The three functors⊗, f∗, f! and all their relations are naturally defined by the structure
of the category.

• A 6-functor formalism is a 3-functor formalism where the three functors admit right
adjoints. That’s all!
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