
1 Simplicial sets and ∞-categories

1.0.1. Define the simplicial category ∆ consisting of finite sets ∆n as objects and
non-decreasing maps. Then define sSet as the category of pre-sheaves on sim-
plicial sets; alternatively, it is the Ind-completion of ∆ via Yoneda-embedding.
Stress the importance of where the maps go for composition.

1.0.2. Given a simplicial set C, we define Cn := C(∆n), which may be described
as MorsSet(∆

n, C). For any category C, we may define it’s nerve N(C), which
has C0 as the set of objects, C1 as the set of morphisms, and C2 as the set of
comutative triangles. The association C 7−→ N(C) is a fully faithful embedding
of the strict 1-category of categories to simplicial sets.

1.0.3. A morphism of simplicial sets f : C −→ D is a Kan fibration if there is
an extension:

∂∆n C

∆n D

An∞-category is a simplicial set C for Map(∆2, C) −→ Map(Λ2
1, C) is a Kan fi-

bration. Here, Map is the same as HomsSet, the enriched hom in the category of
simplicial sets, explicitely given by maps Map(C,D)n := HomsSet(C ×∆n, D).
It turns out that an equivalent condition for C to be an infinity category is that
any map Λn

i −→ C extends to map from the full n-simplex ∆n for 0 < i < n.
We note A −→ Map(∆0, A) is an isomorphism, and there is a natural evaluation
morphism A×Map(A,D) −→ D.

1.0.4. There is a Quillen adjunction sSet HoTop

|−|

S(−)

. This is not an equiva-

lence, for example, the essential image of S(−) are Kan complexes, which satisfy
the filling horn condition for all 0 ≤ i ≤ n. Other examples of Kan complexes
include any simplicial group, and the∞-categories for which are Kan complexes
are called ∞-groupoids. The point of all this is if one is only interested in ho-
motopy theory, one could just work with simplicial sets.

1.0.5. (i) For any ∞-category, and any simplicial set D, Map(D,C) is an
infinity category. These form the functor category for an infinity category,
and so we see infinity categories are enriched over themselves.

(ii) For an infinity category C, one can define its homotopy category, which
consits of the objects of C and morphisms to be homotopy classes of maps
(maps f, g : X −→ Y for which there is a 2-simplex witnessing that g :
X −→ Y is the composite of f : X −→ Y and idY .) Check this is a
category.
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(iii) f : X −→ Y is defined to be an isomorphism if it is an isomorphism in
Ho(C) (check this is an equivalence relation).

(iv) An ∞-groupoid is an ∞-category C such that all morphisms is invertible,
equivaletly that Ho(C) is a groupoid. (Check equivalent to Kan complex).

(v) If X,Y are Kan complexes, then Map(X,Y ) is also a Kan complex. This
makes ∞-groupoids enriched over themselves.

Note: With objects infinity categories, and the infinity category of functors
as morphisms, we use the homotopy coherent nerve functor to get the infinity
category of infinity categories.

1.0.6. We will eventually get to the notion of a symmetric monoidal∞-category.
For now, let us note that (C,⊗), and X an object in C, we should have unit map
1 −→ X and multiplication map X ⊗ X −→ X satisfying homotopy coherent
associativty constraints. Furthermore, a functor F : (C⊗) −→ (D,⊗) between
symmetric monoidal categories, should be a lax symmetric monoidal functor,
which means it has maps 1D −→ F (1C) and F (X)⊗F (Y ) −→ F (X ⊗Y ) func-
torial in X,Y ∈ C with again higher homotopical coherence data.

1.0.7. The symmetric monoidal∞-category of correspondences Corr(C,E) con-
sists of an ∞-category C admitting finite limits, and a class of morphisms E
stable under pullbacks and compositions containing all isomorphisms, and the
symetric monoidal structureis given as follows:

(i) The objects are the objects of C

(ii) The symmetric monoidal structure is the Cartesian symmetric monoidal
structure on C.

(iii) HomCorr(C,E)(X,Y ) is given by the∞-groupoid of objects W ∈ C together
with maps X ←W → Y where W −→ Y is in E.

(iv) Using fibre products one has composition.

1.0.8. A 3-functor formalism is a lax symmetric monoidal functor D : Corr(C,E) −→
Cat∞, where the right hand side is equipped with the product of infinity cate-
gories × structure. We see

(i) We have an association, for every object X ∈ C, an infinity category D(X).

(ii) For any map f : X −→ Y , which defines a correspondence Y ← X → X,
we get a map f∗ : D(Y ) −→ D(X)¿

(iii) We have maps D(X)⊗D(X) −→ D(X×X) −→ D(X), the right hand side
from previous property applied to diagonal map, so the essential image of
D admits a tensor product.
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(iv) For f : X −→ Y in E, we get a correpsondance X ← X → Y inducting a
map f! : D(X) −→ D(Y ).

A six functor formalism occurs when ⊗, f∗, f! admits right adjoints.
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