
0.1. We set the following conventions:

• Cat∆ to denote the sub-category of Cat consisting of simplicially enriched
categories.

• sC to be the category of simplicial objects in a category C.

1 Homotopy coherent nerve and correspondences

1.1. Homotopy coherent nerve: See here for more details.
There is an adjunction pair (F,U) : Graphs −→ Cat between the category
of (reflexive, directed)-graphs and the category of categories. The comonad
FU : Cat −→ Cat gives a cosimplicial resolution of C. Let’s unpack what we
mean by this. Indeed, the object G(C) := (FU)•(C) lives inside sCat, and
each morphism between the levels of the simplicial object is the identity on
objects of underlying categories, G(C) can be viewed as an object living inside
Cat∆, and hence a functor between Cat and Cat∆. There is a canonical map
G(C) −→ C, where C is viewed with the trivial simplicial structure, and this
map is a homotopy equivalence for the model structure given on Cat∆. This
fact can be can be seen most easily by the fact that the essential image of U
consists of UF -projective objects (those with a section T −→ UF (T )). The
simplicial set [n] 7−→ HomCat∆

(G([n]), C) is called the homotopy coherent nerve
of a simplicial enriched category C, denoted as a functor N : Cat∆ −→ sSet.
The right Kan extension of this functor, denoted C(−), is another sort of geo-
metric realisation functor.

1.2. Perhaps a motivation for the above construction could be seen as follows.
We start with the question of considering, for a small category C and D a sim-
plicially enriched category, the homotopy coherent diagrams in D with shape C.
It has been shown that such diagrams are given by the set HomCat∆(G(C), D).
When giving Cat∆ a model structure called the Bergner model structure, it
can be see that G(C) −→ C is a cofibrant resolution. As we have noted, the
construction G(−) realises any category C as the homotopy category of the
simplicially enriched category G(C).

1.3. If C,D are infinity categories, we can get the simplicial category with mor-
phisms Fun(C,D), which we noted formed a weak Kan-complex (so was an
infinity category itself). Applying the construction above gives the infinity cat-
egory of infinity categories, which to be precise, is actually an (∞, 2)-category.
It is true that the nerve of a simplicial category enriched in Kan complexes (i.e.
an infinity groupoid) is an infinity category ([1, Proposition 1.1.5.10]), so called
the infinity category of spaces. One gets Cat∞ by restricting to objects whose
mapping spaces are weak Kan complexes.

1.4. Relatedly, if C is a fibrant simplicial category, and x, y are a pair of ob-
jects, the co-unit map u : MapC(N(C))(x, y) −→ MapC(x, y) is a weak homotopy
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equivalence of simpicial sets. This implies that our adjunction above agrees with
model structures.

1.5. There is another definition that we may prefer for C([n]). It is the nerve
of the category whose objects are {0, 1, ..., n}, and for any (i, j), for j < i the
morphisms is empty, for j ≥ i is Pi,j , the subset of all posets, with composition
equal to union of sets. See [1, Definition 1.1.5.1.] for more details.

1.6. Straightening and Unstraightening: See [1, 2.2.1] for more details.
Fix a simplicial set S, a simplicial category C and a functor φ : C[S] −→ Cop.
Given an object X ∈ sSet/S , let v denote the cone point of Xc. Consider
the simplicial category M := C[Xc]

∐
C[X] C

op; we get a simplicial functor

Stφ(X) : C −→ sSet described by StφX(c) = MapM(c, v) where c ∈ ob(C).
Hence, Stφ can be viewed as a functor from sSet/S −→ Fun(C, sSet). It is
climit preserving, and thus admits a right adjoint by the adjoint functor theo-
rem, called Unstraightening. It is proved in [1,Theorem 2.2.1.2] that this is a
Quillen equivalence, for two model structures.

1.7. The relevance for us will be in relation to coCartesian functors. Let us
elaborate: Given a functor F : D −→ C of infinity categories, a co-cartesian
fibration is an inner fibration of simplicial sets whose induced map on nerves is
a co-cartesian fibration in the usual sense (initial among lifts). Give an example
of cartesian fibrations for schemes.

1.8. There is a natural equialence between∞-categories of functors C −→ Cat∞
and the ∞-categories of coCartesian fibrations. Note the functors from C −→
Cat∞ naturally forms a (∞, 2)-category (the homotopy coherent nerve of a sim-
plicial set may not be an ∞-category!), so we need to restrict to invertible
natural transformations.

1.9. Commutative monoids
Denote the category Finpart to be the category of finite sets with partially de-
fined maps. Then a commutative monoid X in C is defined to be a functor
X : N(Finpart) −→ C such that X(I) −→

∏
i∈I X({i}) = X(∗)I is an isomor-

phism. The morphism ∅ −→ ∗ defines a unit object, and I −→ ∗ defines the
sum maps. In particular, any partially define map f : I −→ J induces sum
maps when looking on fibers f−1(j) −→ {j}. It is then clear what a symmetric
monoidal object should be. One can then apply this to the Cat∞.

1.10. We can get another definition of a symmetric monoidal infinity cate-
gory by utilising straightening/unstraightening. It will be a coCartesian fi-
bration C⊗ −→ Finpart such that C⊗I −→

∏
i∈I C

⊗
∗ induced by the partially

defined maps I −→ {i} is an equivalence. Starting with a symmetric monoidal
∞-category (C,⊗) in the old sense, C⊗ is roughly efined as follows. Ob-
jects of C⊗ are pairs (I, (Xi)i∈I) of a finite set I and objects Xi ∈ C. A
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map (I, (Xi)i∈I) −→ (J, (Yj)j∈J) in C⊗ is given by a partially defined map
f : I −→ J together with maps ⊗i∈f−1(j)Xj −→ Yj for all j ∈ J .

1.11. A lax symmetric monoidal functor C⊗ −→ D⊗ between symmetric monoidal
functors fibered over Finpart is a functor F⊗ that preserves locally coCartesian
lifts of the form I −→ {i}. In particular, F⊗ is symmetric monoidal when it
induces ismorphisms ⊗i∈IF (Xi) −→ F (⊗i∈IXi).

1.12. The correspondance category
Let (∆n)2

+, which consists of the subset spanned by simplices (i, j) ∈ {0, 1, ...., n}2
with i ≥ j. Varying n gives a cosimplicial category (∆•)2

+. A correspondence
infinity category (C,E) consists of n-simplices whose maps are from (∆n)2

+ and
whose arrows going down-right are in E and small squares all small Cartesian.
Part of the definition is that C has all finite limits, and E is stable under pull-
backs and composition. This insures that the category of correspondences is an
infinity category; in particular, filling in the horn:

W W ′

X Y Z

can be filled in with a fibre product.

1.13.
1.14. References:
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