0.1. The join construction

Given two simplicial sets K and L, we denote the join $K \star L$ by the simplices:

$$(K \star L)_n = K_n \cup L_n \cup_{i+j+1=n} K_i \times L_j.$$

We have \star commutes with colimits is either argument, and $\Delta^i \star \Delta^j \simeq \delta^{i+1+j}$. There is a notion of join in classical category theory, and our construction reduces to it.

0.2. For us, an important construction will be the cone and cocone, $K^{\triangleleft}, K^{\triangleright}$; these are left and right joins with Δ^0 , respectively. The join $\Lambda_0^2 \,{}^{\triangleright} \simeq \Delta^1 \times \Delta^1$, for example.

The join $C \star D$ of two infinity categories is again an infinity category.

0.3. Slice categories

Suppose we have a infinity category C and an object of it represented by a morphism $\{s\} \longrightarrow C$, we want the category of objects over $\{s\}$ to be again an infinity category, but essentially to includes simplices containing s as a vertex; this would be the appropriate generalisation to include the fact that we dont have commutativity anymore when considering diagrams like:

so we need to encode higher simplices. The formal definition for an arbitrary morphism $p: L \longrightarrow C$, the simplicial set $C_{/p}$ is characterised by:

$$\operatorname{Mor}_{\mathrm{sSet}}(K, \mathcal{C}_{/p}) \simeq \operatorname{Mor}_p(K \star L, \mathcal{C}).$$

Here, Mor_p is used to indicate morphisms whose restriction to L in the above coincides with p. Using the Yoneda lemma, we can calculate the simplices of this slice category. The other slice category $\mathcal{C}_{p/}$ is defined by maps from $L \star K$.

When C is an infinity category, $C_{/p}$ is also an infinity category, but this takes work to prove and I haven't thought about it.

If $p: A \longrightarrow B$ is a functor of usual categories, we have $N(B_{/p}) \simeq N(B)_{/N(p)}$, via the following equality:

$$N(B_{p})_{n} = \operatorname{Hom}_{\operatorname{Cat}}([n], B_{p}) = \operatorname{Hom}_{p}([n] \star A, B) = \operatorname{Hom}_{N(p)}(N([n] \star A), B) = \operatorname{Hom}_{\operatorname{sSet}}(\Delta^{n}, N(B)_{N(p)}).$$

0.4. Final and initial objects

Given an objects $x \in C$ of an infinity category, a final object is so such that $C_{/x} \longrightarrow C$ is an acyclic fibration of simplicial sets. Some equivalent definitions are:

- 1. The mapping spaces $\operatorname{Map}_{\mathcal{C}}(x', x)$ are acyclic Kan complexes.
- 2. Every simplicial sphere $\alpha : \partial \Delta^n \longrightarrow C$ such that $\alpha(n) = x$ can be filled to the entire *n*-simplex $\Delta^n \longrightarrow C$.

The mapping spaces appearing in the above definition is defined to be the fibre product of $x' \to \mathcal{C} \leftarrow \mathcal{C}_{/x}$.

0.5. There is the following useful lemma [1,Theorem 2.1.3.4]: Let $p: S \longrightarrow T$ be a left fibration of simplicial sets. Suppose that for every vertex $t \in S$, the fibre S_t is contractible (acyclic Kan complex). Then p is a trivial Kan fibration (acyclic fibration). Furthermore, if T is a Kan complex, then p is a Kan fibration.

0.6. Limits and colimits

If K is a simplicial set and C is an infinity catgory, then the limit/colimit of a diagram $p: K \longrightarrow C$ is a final/initial object of $\mathcal{C}_{/p}/\mathcal{C}_{p/}$. In particular, these notions, agree with homotop limits/colimits in the for simplicial categories, but we haven't looked at these. There is also another definition, being that $\mathcal{C}_{p^{\triangleleft}} \longrightarrow \mathcal{C}_{p/}$ being an acyclic fibration in the case of colimits, which can be used to define relative colimits:

$$C_{p^{\triangleleft}/} \simeq C_{p/} \times_{D_{fp/}} D_{fp^{\triangleleft}/}.$$

for $f : C \longrightarrow D$ an inner fibration of simplicial sets, is a trivial fibration of simplicial sets. This agrees with the previous definition $D = \{\star\}$. We will use this next week to construct infinity Kan extensions.

0.7. Straightening and Unstraightening: See [1, 2.2.1] for more details. Fix a simplicial set S, a simplicial category C and a functor $\phi : \mathfrak{C}[S] \longrightarrow C^{op}$. Given an object $X \in \mathrm{sSet}_{/S}$, let v denote the cone point of X^{\triangleright} . Consider the simplicial category $\mathcal{M} := \mathfrak{C}[X^c] \coprod_{\mathfrak{C}[X]} C^{op}$; we get a simplicial functor $\mathrm{St}_{\phi}(X) : C \longrightarrow \mathrm{sSet}$ described by $\mathrm{St}_{\phi}X(\triangleright) = \mathrm{Map}_{\mathcal{M}}(c,v)$ where $c \in \mathrm{ob}(C)$. Hence, St_{ϕ} can be viewed as a functor from $\mathrm{sSet}_{/S} \longrightarrow \mathrm{Fun}(C, sSet)$. It is colimit preserving, and thus admits a right adjoint by the adjoint functor theorem, called Unstraightening. It is proved in [1,Theorem 2.2.1.2] that this is a Quillen equivalence, for two model structures.

0.8. We are grateful that it is possible to associate for every simplicial set X in $\mathrm{sSet}_{/S}$ a corresponing functor $\mathrm{St}_{\mathrm{id}}X : \mathfrak{C}(S)^{\mathrm{op}} \longrightarrow \mathrm{sSet}$; in practise, this is difficult as we will have needed to keep track of many higher coherence data. We defined the unstraightening functor $\mathrm{Un}_{\mathrm{id}}Y$, where $Y \in \mathrm{sSet}^{\mathcal{C}}$ very abstractly, so let us understand it a bit more concretely. Let s be a vertex of S. We have:

$$\operatorname{Hom}_{\operatorname{sSet}_{/S}}(\{s\}, \operatorname{Un}_{\operatorname{id}}(Y)) = \operatorname{Hom}_{\operatorname{sSet}^{\mathcal{C}}}(\operatorname{St}_{\operatorname{id}}\{s\}, Y).$$

Here $\mathcal{C} = \mathfrak{C}[S]^{op}$. Lets consider the pushout:

When trying to understand \mathcal{M} is may be instructive to note that \mathfrak{C} : sSet \longrightarrow sCat is colimit preserving and therefore the pushout could be computed on the level of sSet.

We need to understand $\operatorname{Mor}_{\mathcal{M}}(s', v)$ where $s' \in \operatorname{ob}(S)$. The only way there can exist an edge $s'' \longrightarrow v$ for any vertex in S is if we have a triangle $s'' \longrightarrow s \longrightarrow v$, and a two simplex realising composition. Hence a natural transformation in $\operatorname{Hom}_{s\operatorname{Set}^{c}}(\operatorname{St}_{\operatorname{id}}\{s\}, Y)$ is determined purely by where it sends $\{s\}$ i.e., its determined by points of Y(s).

If Y(-) lands in weak Kan complexes (i.e. infinity categories), then as noted in [1,Theorem 2.2.2.11], the fibre of $\operatorname{Un}_{\operatorname{id}}(Y)$ is literally gives by Y(s). This can be seen by looking at maps $\Delta^n \longrightarrow \operatorname{Un}_{\operatorname{id}}(Y)$, such that we have a factoring $\Delta^n \longrightarrow \{s\} \longrightarrow S$

Performing a similar argument sort $\{s \longrightarrow t\}$ as above, any morphism $s'' \longrightarrow v$ will give us a simplex with vertices s'', s, t, v, and so one sees that functors $\operatorname{Hom}_{\mathrm{sSet}} c\left(\operatorname{St}_{\mathrm{id}}\{s \longrightarrow t\}, Y\right)$ corresponds to a simplicial map $Y(s) \longrightarrow Y(t)$. A commutative diagram $s \longrightarrow t \longrightarrow r$ gets sent to a not necessarily commutative diagram $Y(s) \longrightarrow Y(t) \longrightarrow Y(r)$ with a homotopy between the compositions.

We can thus see how morphisms to the cone gives way to a generalised Grothendieck construction.

0.9. Cartesian Morphisms Let $p: X \longrightarrow S$ be an inner fibration of simplical sets. We shall say f is p-Cartesian if the inducted map:

$$X_{/f} \longrightarrow X_{/y} \times_{S_{/p(y)}} S_{p(f)}$$

is a trivial Kan fibration. The definition helps us make sense of 'fibres varying covariantly'.

When \mathcal{C} is an ordinary category, and $p: N(\mathcal{C}) \longrightarrow \Delta^1$ is a map, automatically an inner fibration, then $f: x \longrightarrow Y$ in \mathcal{M} is *p*-cartesian if and only if it is cartesian in the clasical sense.

0.10. Cartesian fibrations We say a map $p: X \longrightarrow S$ os simplicial sets is a Cartesian fibration if p is an inner fibration and for every edge $f: x \longrightarrow y$ of S and every vertex \tilde{y} of X lifting y, there exists a p-Cartesian arrow $\tilde{f}: \tilde{x} \longrightarrow \tilde{y}$ with $p(\tilde{f}) = f$. We can also define co-cartesian fibrations similarly.

0.11. The relevance for us will be in relation to coCartesian functors. Suppose we're interested in $\operatorname{Fun}(C, \operatorname{Cat}_{\infty})$ of infinity categories. As noted in above, the functors are valued in infinitt categories, unstraightening will gives us a family of simplicial sets over C in an explicit way. It is true that this will end up being a co-cartesian fibration, and indeed there is an equivalece the two infinity categories. The precise equivalence is respect to certain model structures that we will not be going into.

0.12. Conclusion

We know a way now of talking about functors $\mathcal{D}_0 : C \longrightarrow \operatorname{Cat}_{\infty}$. Suppose C is the category of schemes, recall that we're interested in the setting where we have

a distinguished class of morphisms E for which functors like $f_!$ are defined. In the previous talk, we constructed the correspondence category $\operatorname{Corr}(C, E)$. In the next talk, we will see how to extend \mathcal{D}_0 to a functor $\mathcal{D} : \operatorname{Corr}(C, E) \longrightarrow \operatorname{Cat}_{\infty}$.

0.13. References:

1. Higher Topos Theory, J. Lurie.