
0.1. The join construction
Given two simplicial sets K and L, we denote the join K ? L by the simplices:

(K ? L)n = Kn ∪ Ln ∪i+j+1=n Ki × Lj .

We have ? commutes with colimits is either argument, and ∆i ? ∆j ' δi+1+j .
There is a notion of join in classical category theory, and our construction re-
duces to it.

0.2. For us, an important construction will be the cone and cocone, K/,K.;
these are left and right joins with ∆0, respectively. The join Λ2 .

0 ' ∆1 ×∆1,
for example.

The join C ? D of two infinity categories is again an infinity category.

0.3. Slice categories
Suppose we have a infinity category C and an object of it represented by a
morphism {s} −→ C, we want the category of objects over {s} to be again an
infinity category, but essentially to includes simplices containing s as a vertex;
this would be the appropriate generalisation to include the fact that we dont
have commutativity anymore when considering diagrams like:

x x′

s

so we need to encode higher simplices. The formal definition for an arbitrary
morphism p : L −→ C, the simplicial set C/p is characterised by:

MorsSet(K, C/p) ' Morp(K ? L, C).

Here, Morp is used to indicate morphisms whose restriction to L in the above
coincides with p. Using the Yoneda lemma, we can calculate the simplices of
this slice category. The other slice category Cp/ is defined by maps from L ?K.

When C is an infinity category, C/p is also an infinity category, but this takes
work to prove and I haven’t thought about it.

If p : A −→ B is a functor of usual categories, we have N(B/p) ' N(B)/N(p),
via the following equality:

N(B/p)n = HomCat([n], B/p) = Homp([n]?A,B) = HomN(p)(N([n]?A), B) = HomsSet(∆
n, N(B)/N(p)).

0.4. Final and initial objects
Given an objects x ∈ C of an infinity category, a final object is so such that
C/x −→ C is an acyclic fibration of simplicial sets. Some equivalent definitions
are:

1. The mapping spaces MapC(x′, x) are acyclic Kan complexes.

2. Every simplicial sphere α : ∂∆n −→ C such that α(n) = x can be filled to
the entire n-simplex ∆n −→ C.
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The mapping spaces appearing in the above definition is defined to be the fibre
product of x′ → C ← C/x.

0.5. There is the following useful lemma [1,Theorem 2.1.3.4]: Let p : S −→ T
be a left fibration of simplicial sets. Suppose that for every vertex t ∈ S, the
fibre St is contractible (acyclic Kan complex). Then p is a trivial Kan fibration
(acyclic fibration). Furthermore, if T is a Kan complex, then p is a Kan fibration.

0.6. Limits and colimits
If K is a simplicial set and C is an infinity catgory, then the limit/colimit
of a diagram p : K −→ C is a final/initial object of C/p/Cp/. In particular,
these notions, agree with homotop limits/colimits in the for simpicial categories,
but we haven’t looked at these. There is also another definition, being that
Cp// −→ Cp/ being an acyclic fibration in the case of colimits, which can be
used to define relative colimits:

Cp// ' Cp/ ×Dfp/
Dfp//.

for f : C −→ D an inner fibration of simplicial sets, is a trivial fibration of
simplicial sets. This agrees with the previous definition D = {?}. We will use
this next week to construct infinity Kan extensions.

0.7. Straightening and Unstraightening: See [1, 2.2.1] for more details.
Fix a simplicial set S, a simplicial category C and a functor φ : C[S] −→ Cop.
Given an object X ∈ sSet/S , let v denote the cone point of X.. Consider
the simplicial category M := C[Xc]

∐
C[X] C

op; we get a simplicial functor

Stφ(X) : C −→ sSet described by StφX(.) = MapM(c, v) where c ∈ ob(C).
Hence, Stφ can be viewed as a functor from sSet/S −→ Fun(C, sSet). It is col-
imit preserving, and thus admits a right adjoint by the adjoint functor theorem,
called Unstraightening. It is proved in [1,Theorem 2.2.1.2] that this is a Quillen
equivalence, for two model structures.

0.8. We are grateful that it is possible to associate for every simplicial set X
in sSet/S a corresponing functor StidX : C(S)op −→ sSet; in practise, this is
difficult as we will have needed to keep track of many higher coherence data. We
defined the unstraightening functor UnidY , where Y ∈ sSetC very abstractly, so
let us understand it a bit more concretely. Let s be a vertex of S. We have:

HomsSet/S ({s},Unid(Y )) = HomsSetC (Stid{s}, Y ).

Here C = C[S]op. Lets consider the pushout:

C[{s}] C[S]

C[{s}.] M
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When trying to understand M is may be instructive to note that C : sSet −→
sCat is colimit preserving and therefore the pushout could be computed on the
level of sSet.

We need to understand MorM(s′, v) where s′ ∈ ob(S). The only way
there can exist an edge s′′ −→ v for any vertex in S is if we have a trian-
gle s′′ −→ s −→ v, and a two simplex realising composition. Hence a natural
transformation in HomsSetC (Stid{s}, Y ) is determined purely by where it sends
{s} i.e., its determined by points of Y (s).

If Y (−) lands in weak Kan complexes (i.e. infinity categories), then as noted
in [1,Theorem 2.2.2.11], the fibre of Unid(Y ) is literally gives by Y (s). This can
be seen by looking at maps ∆n −→ Unid(Y ), such that we have a factoring
∆n −→ {s} −→ S

Performing a similar argument sort {s −→ t} as above, any morphism
s′′ −→ v will give us a simplex with vertices s′′, s, t, v, and so one sees that func-
tors HomsSetC (Stid{s −→ t}, Y ) corresponds to a simplicial map Y (s) −→ Y (t).
A commutative diagram s −→ t −→ r gets sent to a not necessarily commutative
diagram Y (s) −→ Y (t) −→ Y (r) with a homotopy between the compositions.

We can thus see how morphisms to the cone gives way to a generalised
Grothendieck construction.

0.9. Cartesian Morphisms Let p : X −→ S be an inner fibration of simpicial
sets. We shall say f is p-Cartesian if the inducted map:

X/f −→ X/y ×S/p(y)
Sp(f)

is a trivial Kan fibration. The definition helps us make sense of ’fibres varying
covariantly’.

When C is an ordinary category, and p : N(C) −→ ∆1 is a map, automati-
cally an inner fibration, then f : x −→ Y in M is p-cartesian if and only if it is
cartesian in the clasical sense.

0.10. Cartesian fibrations We say a map p : X −→ S os simplicial sets is a
Cartesian fibration if p is an inner fibration and for every edge f : x −→ y of S
and every vertex ỹ of X lifting y, there exists a p-Cartesian arrow f̃ : x̃ −→ ỹ
with p(f̃) = f . We can also define co-cartesian fibrations similarly.

0.11. The relevance for us will be in relation to coCartesian functors. Suppose
we’re interested in Fun(C,Cat∞) of infinity categories. As noted in above, the
functors are valued in infinitt categories, unstraightening will gives us a family
of simplicial sets over C in an explicit way. It is true that this will end up
being a co-cartesian fibration, and indeed there is an equivalece the two infinity
categories. The precise equivalence is respect to certain model structures that
we will not be going into.

0.12. Conclusion
We know a way now of talking about functors D0 : C −→ Cat∞. Suppose C is
the category of schemes, recall that we’re interested in the setting where we have
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a distinguished class of morphisms E for which functors like f! are defined. In the
previous talk, we constructed the correspondence category Corr(C,E). In the
next talk, we will see how to extend D0 to a functor D : Corr(C,E) −→ Cat∞.
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