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Abstract

Deligne’s equidistribution theorem first appeared in [Del80, Theorem 3.5.3]. It was ex-
panded upon by Katz in several works. Here we follow Katz’s presentation of this theorem
in [Kat70, Chapters 1 – 3] very closely.

1 Background

Last time, Matthew explained how Deligne’s work which bounded Kloosterman sums implied
the equidistribution of the angles of Gauss sums with respect to a fixed prime p, as p→ ∞. For
instance, recall the Kloosterman sum

Kl(p, a) =
∑

xy≡a (mod p)

ψ(x+ y),

where ψ : Fp → C∗ is the standard additive character ψ(x) = e2πix/p. By the Riemann Hypothe-
sis for curves, we have |Kl(p, a)| ≤ 2

√
p. Deligne’s work generalized this to Kloosterman sums

in more variables.

Deligne’s equidistribution theorem can be used to address a more refined question: how
are the Kloosterman sums themselves distributed? In the simpler case above, Kl(p, a) is real,
and thus it can be associated to an angle θ(p, a) such that

−Kl(p, a) = 2
√
p cos θ(p, a).

If we fix a and let p vary, one might expect a Sato-Tate distribution for θ (i.e. (2/π) sin2 dθ), but
we apparently have basically no progress towards this question even today. So instead, we will
fix p and let a vary, and hope to prove something about equidistribution as p gets sufficiently
large.

Deligne’s equidistribution gives a general statement that, under suitable conditions, the
image of the Frobenius elements in the representation of the fundamental group associated
to a lisse sheaf are equidistributed. What are they equidistributed in? Well, the entire image
of the fundamental group is the monodromy group of the lisse sheaf in question, but by the
Weil conjectures these Frobenius elements should have bounded eigenvalues. Thus they land
in some compact subgroup. Thus equidistribution applies to the Haar measure on a maximal
compact subgroup of the monodromy group.

The goal of this talk is to explain the statement and proof of Deligne’s equidistribution the-
orem. The following talks will construct Kloosterman sheaves and compute their monodromy
groups, so that the equidistribution theorem applied to them implies the equidistribution of
Kloosterman angles.
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2 Statement of the theorem

We state themain theorem here and explain what it means. It is a function field statement. Let
q be a power of a prime p. We begin with a smooth geometrically connected curve U/Fq, which
is the complement of a finite set of points in a proper curve C/Fq. Let F be a lisseQl-sheaf on
U that is pure of weight 0. (We fix an isomorphism Ql

∼= C.) This means that eigenvalues of
the Frobenius at all points of U in the representation associated to F all have absolute value
1. Fixing a geometric base point x̄ in U (which we will ignore for convenience), we define the
étale fundamental groups

πa1 := π1(U), πg1 = π1(UFq
).

Then we define the geometric monodromy group Ggeom to be the Zariski closure of the image
of πg1 in AutQl(Fx̄)

∼= GL(n,Ql). We define the arithmetic monodromy group Garith similarly.
For simplicity, we denote G = Ggeom; in the statement of our theorem we will assume that

it equals Garith anyways1.
A fundamental result of Deligne gives that the purity of F implies that the identity com-

ponentG0(Ql) is semisimple. On the other hand,G(C) is a complex semisimple Lie group. We
now recall the following facts from representation theory.

• (Cartan’s theorem) There exists a maximal compact subgroup of G(C); call itK.

• (Cartan’s theorem) All compact subgroups of G(C) are conjugate to a subgroup ofK.

• (Weyl’s unitarian trick) Finite-dimensional Ql-representations of G are equivalent to
finite-dimensional holomorphic representations of G(C) as a complex Lie group, which
are equivalent to finite-dimensional continuous representations ofK.

• (Peter-Weyl) Traces of finite-dimensional continuous representations of K separate K-
conjugacy classes.

For each point u ∈ U , the semisimplification of the image of the Frobenius conjugacy class
Fu in G(C) lies in a compact subgroup of G(C), as it has eigenvalues of magnitude 1 (since F
is pure of weight 0). That is, ρ(Fu)ss is conjugate to an element ofK. This gives a well-defined
element θ(u) ∈ K♮ (the set of conjugacy classes ofK) – here we use Peter-Weyl.

The Haar measure onK descends to one onK♮. Concretely, given a continuous function f
onK♮, we have ∫

K♮

fdµ♮ :=

∫
K
fdµHaar,

where we extend f to a central function onK.

Example 2.1. If G = SL(2), then K = SU(2) and we can choose K♮ to be represented by

matrices
(
eiθ(u) 0

0 e−iθ(u)

)
, thus identifying it with the interval [0, π]. The measure µ♮ is the

Sato-Tate measure 2
π sin

2 θdθ.

Theorem 2.2 (Deligne’s equidistribution theorem). Let F be a lisse sheaf on a smooth geomet-
rically connected curve U/Fq that is pure of weight 0. Assume that the associated arithmetic and
geometric monodromy groups are equal: G = Garith = Ggeom. Then the conjugacy classes of the
Frobenius elements Fu, for u ∈ U , are equidistributed in a maximal compact subgroup K of G.

1We can get by with the condition that the image of πa
1 is in G.
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More precisely, define the following sequences.

Xn =
1

|U(Fqn)|
∑

deg(u)=n

δ(θ(u)n/deg(u))

Yn =
1

| deg u = n|
∑

deg(u)=n

δ(θ(u))

Zn =
1

| deg u ≤ n|
∑

deg(u)≤n

δ(θ(u))

All these sequences of measures tend to µ♮ on K♮. In other words, for any continuous C-valued
function f onK♮, we have∫

K♮

fdµ♮ = lim
n

∫
K♮

fdXn = lim
n

∫
K♮

fdYn = lim
n

∫
K♮

fdZn.

Remark. This result holds in more generality. Specifically, we can replace the curve U with a
smooth, geometrically connected scheme of arbitrary dimension over a finite field. See [KS99,
Theorem 9.2.6]

3 Proof of the theorem

We will first briefly review some ingredients to the proof.

3.1 Swan conductors

Let us briefly review the notion of a Swan conductor, which will be used in the proof. Given a
Henselian DVR R with perfect residue field k of cahracteristic p and fraction field K, we have
the short exact sequences

1 → I → Gal(Ksep/K) → Gal(ksep/k) → 1, 1 → P → I →
∏
l ̸=p

Zl(1) → 1.

There is an upper numbering filtration and a lower numbering filtraion on I (both decreasing),
whose precise definition we do not need. Some useful properties are: I = I(0), P is the closure
of all I(r) for all r > 0.

P is the ramification group. If P acts through a finite discrete quotient on a Z[1/p]-module
M , then M = ⊕M(x) for some x ≥ 0, where M(0) = MP , (M(x))I(x) = 0 for x > 0 and
(M(x))I(y) = M(x) for y > x. The finitely many x for whichM(x) is non-zero are known as
the breaks ofM . These can be cahracterized as the x for which⋃

y>x

ρ(I(y)) ⊊ ρ(I(x)).

Changing settings slightlywithM anA-modulewhereA is a noetherian local ring of residue
characteristic ̸= p, we have the following definition.

Definition 3.1. The Swan conductor ofM is defined as

Swan(M) =
∑
x≥0

x rankA(M(x)).

In particular, Swan(M) = 0 iffM is trivial as a representation of P .
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3.2 Theorems of étale cohomology

We state without proof several important results from étale cohomology.

Proposition 3.2. Let F be lisse on U ⊂ C, a smooth proper geometrically connected curve over a
perfect field k. Then

H0(Uksep ,F) = (Fη̄)π
geom
1 , H2

c (Uksep ,F) = (Fη̄)πgeom
1

(−1).

Theorem 3.3 (Grothendieck-Ogg-Shafarevich). With the same conditions, we have

χ(Uksep ,F) = χc(Uksep ,F) = rank(F)χc(Uksep)−
∑

x∈C−U
degk(x) Swanx(F).

Theorem 3.4 (Grothendieck trace formula). Same conditions, but let k be a finite field and let F
be the geometric Frobenius with Fx its image in π1(U) throughDx/Ix. Then∑

x∈U(k)

Tr(Fx,Fη̄) =
∑
i

(−1)iTr(F |H i
c(Uksep ,F)).

Theorem 3.5 (Weil II). LetX/Fq be a scheme of finite type and let F be a mixed sheaf of weights
≤ w. ThenH i(XFq

,F) is mixed of weights ≤ w + i.

3.3 The proof

Recall the statement:∫
K♮

fdµ♮ = lim
n

∫
K♮

fdXn = lim
n

∫
K♮

fdYn = lim
n

∫
K♮

fdZn.

for functions f onK♮. Here we began with a lisse sheafF on U , pure of weight 0, which we will
identify with a representation ρ : πa1 → G, with G = Garith = Ggeom.

We will just do the proof for Xn, with the other cases being analogous. By the Peter-Weyl
theorem, it suffices to prove the result for characters of irreducible representations. The trivial
representation reduces to 1 = 1. For a nontrivial irreducible representation ψ (of G, as those
ofK are restrictions from those of G), orthogonality of characters gives∫

K♮

fdµ♮ = 0.

Thus it will certainly suffice to prove that∣∣∣∣∫
K♮

Tr(ψ)dXn

∣∣∣∣ ≤ O

(
dim(ψ)

qn/2

)
.

We will do this by studying the composite representation

π1(U)
ρ−→ G

ψ−→ GL(m,Ql),

whose corresponding sheaf we will denote with F(ψ). The first thing to note is that F(ψ) is
still pure of weight 0, because ψ ends up making F(ψ) a subquotient of some F⊗m ⊗ (F∨)⊗m.

Now note that the LHS of the Grothendieck-Lefschetz trace formula satisfies∑
x∈U(Fqn )

Tr(Fx|F(ψ)) = |U(Fqn)|
∫
K♮

Tr(ψ)dXn.
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Indeed, the contribution of some xwith residue field of size qa in the measureXn is indeed
given by the the n/ath power of the image of the Frobenius x 7→ xq

a under ψ, which is indeed
the image of Frobenius on the left which maps x 7→ xq

n . Thus the trace formula applied to
F(ψ) gives

|U(Fqn)|
∫
K♮

Tr(ψ)dXn =
2∑
i=0

(−1)iTr(Fn|H i
c(UFq

,F(ψ))).

Since ψ is irreducible and non-trivial, its invariants and co-invariants under π1(U) are both 0.
Since π1(U) is dense in G, this implies that

H0
c (UFq

,F(ψ)) = H2
c (UFq

,F(ψ)) = 0.

Next, since F(ψ) is pure of weight 0 on UFq
, we have that H1

c (UFq
,F(ψ)) is mixed of weight

≤ 1. Thus we have ∣∣∣∣∫
K♮

Tr(ψ)dXn

∣∣∣∣ ≤ |χc(UFq
,F(ψ))|qn/2

|U(Fqn)|
. (1)

The denominator is bounded below by

|U(Fqn)| ≥ qn − h1c(UFq
,F(ψ))qn/2,

which is approximately qn. Thenumerator canbe boundedusing theGrothendieck-Ogg-Shafarevich
formula:

χc(UFq
,F(ψ)) = χc(UFq

,F(ψ))−
∑

y∈(C−U)(Fq)

Swany(F(ψ)).

Note that at each y ∈ (C−U)(Fq), the biggest break of F(ψ) is less than that of F , because
Iy acts on F through ρ but on F(ψ) through ψ ◦ ρ. Therefore, if r1, . . . , rN are these biggest
breaks of F , then we have

|χc(UFq
,F(ψ))| ≤

(
2g − 2 +N +

N∑
i=11

ri

)
dim(ψ).

Combining this with (1), we have∣∣∣∣∫
K♮

Tr(ψ)dXn

∣∣∣∣ ≤ O

(
dim(ψ)

qn/2

)
,

as desired.
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