
DERIVED ∞-CATEGORIES

CALEB JI

The purpose of this talk is to explain where derived categories and triangulated categories
are situated in themodern perspective to a classical algebraic geometer. We will explain where
the non-functoriality of cones in triangulated categories comes from and use this to motivate
the definition of stable∞-categories. We will then construct the derived∞-category. Finally,
we will say some words about symmetric monoidal∞-categories and the Grothendieck con-
struction. All of this comes from Lurie [Lur17], though in the last section we briefly follow
Scholze’s exposition [Sch22].

1. Triangulated categories and their colimits and cones

We recall that a triangulated category is given by an additive category D with a set of exact
triangles and a translation functor satisfying various properties. The key property is that of a
cone: for eachX

f−→ Y , there is an object C(f) such that

X
f−→ Y

g−→ C(f)
h−→ X[1]

is an exact triangle. One of the main properties of triangulated categories is that they give
long exact sequences; for example in the derived category of an abelian category, applying the
functorH0(−) to an exact triangle leads to a long exact sequence in cohomology.

Let us review how the cone is constructed in an important example of triangulated cate-
gories: the derived category D(A) of an abelian category A. Given f : X → Y a map of
elements ofD(A), we set C(f) = X[1]⊕ Y and define the differential on the complex C(f) by

d =

(
dX[1] 0
f [1] dY

)
.

The triangle maps Y → C(f)→ X[1] are naturally induced. The cone is unique up to isomor-
phism. For example, in the caseX and Y are given by a complex concentrated in one degree, we
could instead define C(f) as coker f , and the two resulting triangles are isomorphic – though
not in the homotopy category; this is where inverting quasi-isomorphisms in the derived cat-
egory comes in!

However, the cone is not unique up to canonical isomorphism; in particular, the cone con-
struction is not functorial, as the following simple example shows.

R 0 R[1]

0 R R[1]

id0

The cone is supposed to be interpretable as the colimit of 0 ← X → Y . Thus this issue of
the non-functoriality of the cone can be interpreted as a need for homotopy limits and col-
imits. Grothendieck realized this deficiency of derived and triangulated categories from the
beginning, and (on a whim, it seems) wrote a 2000 page manuscript on derivators to solve this
problem. Nowadays derivators are seen as a truncation of∞-categories which may be espe-
cially useful for certain problems. However, our goal today is to discuss∞-categories.
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2. Stable∞-categories

Recall that the derived category of and abelian category A is obtained from the homotopy
category of A. Morally, it should still be considered as some type of homotopy category. In-
deed, the derived∞-category will be seen to be an underlying∞-category whose homotopy
category recovers the ordinary derived category. Such∞-categories have features which make
them known as stable∞-categories.

Recall thatwe take ‘∞-category’ tomean a simplicial set which satisfies the inner Kan condi-
tions. A∞-category is called pointed if it has a zero object. The other notions for stability take
inspiration from stable homotopy theory. Recall that cofibers and fibers can be constructed in
the category of ordinary topological spaces. These concepts find a more natural home in spec-
tra, which are the principal objects of study in stable homotopy theory. Recall that fiber and
cofiber sequences are the same for spectra. The same is true for stable∞-categories. In fact,
according to Lurie, the category of spectra is the free presentable stable ∞-category on one
object. It is also the initial presentably symmetric monoidal∞-category.

Let C be a pointed∞-category. A triangle in C consists of X f−→ Y
g−→ Z with a 2-simplex

giving a morphism h : X → Z and a 2-simplexX → 0→ Z also involving h.

X Y

0 Z

f

g

Now X is a fiber of g if this is a pullback diagram, and Z is a cofiber of f if it is a pushout
diagram.

Definition 2.1. An∞-category C is stable if:
1. It has a 0 element.
2. Every morphism admits a fiber and a cofiber.
3. Every triangle is a fiber sequence if and only if it is a cofiber sequence.

Recall that the homotopy category of an∞-category C is the ordinary 1-category obtained
by taking objects to be 0-simplices and morphisms to be 1-simplices up to homotopy. An im-
portant result of Lurie that takes quite a bit of work is that the homotopy category of a stable
∞-category is triangulated. In fact, the translation functor and class of triangles can be ex-
plicitly defined.

3. The derived∞-category

The derived∞-category of an abelian category A can be constructed with a process of tak-
ing chain complexes and then localizing the quasi-isomorphisms. However, we will discuss an
alternate method. If A has enough projectives, we will construct a stable ∞-category D(A)
whose homotopy category is the usual derived category.

First, we want to define the infinity category Ch(A). Intuitively, 1-simplices are chain mor-
phisms, 2-simplices are chain homotopies, etc. More precisely, we note that the 1-category
Ch(A) is a dg-category by setting

Hom(A•, B•)n =
∏

Hom(Ai, Bi+n).

We can make a simplicial category from a dg-category by using the Dold-Kan correspondence,
which is an equivalence between nonnegatively graded chain complexes of abelian groups and
simplicial abelian groups. Indeed, applying the truncation functor, we have that the 1-category
Ch(A) is enriched over Ch≥0(Ab), and thus enriched over simplicial abelian groups. Then we
take the homotopy coherent nerve to get the∞-category Ch(A).
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Remark. A better way is to directly take the differential graded nerve from the dg-category.

A key result, which takes some work, is that Ch(A) is indeed a stable∞-category.

When there are enough projectives in an abelian category, one can construct the ordinary
derived category by taking the homotopy category of the category of chain complexes of pro-
jective objects. Such a construction works here: we define

D−(A) = N (Ch>>−∞(A)).
This is also a stable∞-category whose suspension functor is given by shifting by 1. Moreover,
it has a t-structure whose heart isA, and its homotopy category is the usual derived category.

4. Symmetric monoidal∞-categories and the Grothendieck construction

Recall that writing down functors Schop → Cat, like QCoh, is not so straightforward be-
cause Cat is a 2-category. Grothendieck did this by defining fibered categories, which in this
case would beQCoh = (S,F)withmorphisms (S′,F ′)→ (S,F) given bymorphisms f : S → S′

and g : f∗F → F ′. Then he showed that Cartesian fibrations over a category C are equivalent
to functors Cop → Cat, which is known as the Grothendieck construction.

In the∞-scenario, a commutativemonoid in an∞-categoryC is defined as a functorX : Finpart →
C such that for all finite sets I,

X(I)→
∏
i∈I

X({i})

is an isomorphism. A symmetric monoidal category is a commutative monoid in∞− Cat, so
we need to write down functors Finpart →∞− Cat.

Now this can be achieved via the (∞, 1) version of the Grothendieck construction, which is
also known as Lurie’s Straightening/Unstraightening. We state it without even explaining the
definitions.

Theorem 4.1 (Lurie, Straightening/Unstraightening). There is a natural equivalence between
the∞-categories of functors C →∞− Cat and the∞-category of coCartesian fibrations over C.
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