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1 What is quadratic reciprocity good for?

You may have heard of Gauss’ law of quadratic reciprocity:(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4

for distinct odd primes p, q. With deep mathematical prescience, Gauss called this the “The-
orem Aurum", though even he could not have foreseen the full wealth of mathematics this
theorem would lead to. Indeed, while this result may initially seem little more than an iso-
lated curiosity, its generalizations and reinterpretations was a driving force in the early days
of algebraic number theory, culminating in the class field theory of the early 20th century. The
goal of this article is to sketch some of these ideas, focusing on reciprocity laws as a unifying
theme in class field theory.

Outline and Prerequisites

In Section 2 we define Legendre symbols and Jacobi symbols and give a proof of quadratic reci-
procity using algebraic number theory. In section 3 we generalize these definitions to power
residue symbols. While versions of the power reciprocity law can be stated without much extra
machinery, to fully understand it we will need to introduce Hilbert symbols. The statement of
Hilbert reciprocity involves local fields, but specializes to the classical reciprocity laws consid-
ered earlier. This leads to Section 4, where we explain Hilbert symbols from the perspective of
local class field theory and Kummer theory. Then in Section 5 we put these ideas together to
state global Artin reciprocity, which includes Hilbert reciprocity as a special case.

Sections 2 and 3 should be readable by anyone with a strong grasp of elementary number
theory and abstract algebra. However, some standard notions from algebraic number theory
will appear, such as the splitting of primes and the Frobenius element. If the reader is un-
familiar with these concepts, they can either take them on faith or take this opportunity to
learn them. Sections 4 and 5 rely on algebraic number theory more heavily, and in particular a
knowledge of local fields. This material, as well as the background for it, can be found in many
places, such as [Mil20a], [Mil20b], and [Neu99].

2 Quadratic reciprocity revisited

In this section we review the definition of Legendre and Jacobi symbols and give a proof of
quadratic reciprocity. Our proof is not the easiest, it has the advantage of giving a new inter-
pretation of the meaning of a Legendre symbol through algebraic number theory. Although
this method of proof isn’t directly generalizable to the higher cases, it previews some of the
concepts that will be used.
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2.1 Legendre and Jacobi symbols

Definition 2.1 (Legendre symbol). For an odd prime p, we define the Legendre symbol for a ∈ Z
as (

a

p

)
=


1 a is a nonzero quadratic residue (mod p)

−1 a is not a quadratic residue (mod p)

0 p|a.

Because F∗
p is multiplicative, we have

(
a
p

)
≡ a

(p−1)
2 (mod p), from which the multiplicativ-

ity of the Legendre symbol is clear.

One can easily extend the definition of Legendre symbols to Jacobi symbols in which the
denominator is allowed to be any odd integer greater than 1.

Definition 2.2 (Jacobi symbol). Let n be an odd integer greater than 1 with prime factorization
n = pa11 · · · pakk . We define the Jacobi symbol for a ∈ Z as(a

n

)
=

k∏
i=1

(
a

pi

)ak

.

Note that the sign of the Jacobi symbol does not always indicate whether a is a quadratic
residue (mod n), but the Jacobi symbol does behave like the Legendre symbol formally; e.g. it
satisfies multiplicativity. Furthermore, it also satisfies quadratic reciprocity.

Theorem 2.3 (Quadratic reciprocity). If p and q are two distinct odd primes, then we have(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
2 .

Furthermore, using Jacobi symbols, ifm and n are odd and relatively prime, we have(m
n

)( n

m

)
= (−1)

(m−1)(n−1)
2 .

There are many, many proofs of quadratic reciprocity. We will present one which is not the
easiest or most elementary, but it has the key advantage of interpreting the Legendre symbol
in terms of algebraic number theory, which will be useful to keep in mind for generalizations.

2.2 Splitting of prime ideals

Before class field theory really took off, mathematicians were able to understand important
parts of it through quadratic, cubic, and quartic reciprocity laws. We begin by describing what
the law of quadratic reciprocity implies for quadratic number fields.

Given two distinct odd primes p, p, set p∗ = (−1)(p−1)/2p so that the ring of integers OK of
K = Q[

√
p∗] is given by Z[

√
p∗]. We can ask when (q) splits in OK . If p∗ is a quadratic residue

(mod q), say p∗ ≡ k2 (mod q), then (q)|(k +
√
p∗)(k −

√
p∗), but (q) doesn’t divide either, so

it must split. Similarly, we can show that if p∗ is not a quadratic residue (mod q), then (q) re-
mains inert. In other words,

(
p∗

q

)
indicates whether (q) splits in OK .

However, this answer is not completely satisfactory. For example, it doesn’t give the den-
sity of primes which split. Instead, it would be much nicer to have a condition (mod p). But
quadratic reciprocity gives us precisely that! Indeed, by quadratic reciprocity, we have

(
p∗

q

)
=(

q
p

)
. This means that (q) splits precisely when q is a quadratic residues (mod q). Thus the set

of primes which split is determined by half the possible residues (mod q), and furthermore by
Dirichlet’s theorem comprise a density of half the primes.
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2.3 A proof using algebraic number theory

Reflecting on the previous interpretation, we see that by quadratic reciprocity, both
(
p∗

q

)
and(

q
p

)
indicate whether (q) splits in OK = Z[1+

√
p∗

2 ]. If one could prove this statement on its
own, it would give a very satisfying proof of quadratic reciprocity as it would show that these
two Legendre symbols both have a natural meaning which was not at all obvious from their
definition. We have already seen how

(
p∗

q

)
indicates the splitting of (q) in a fairly elementary

way. Thus it remains to show(
q

p

)
= 1 ⇔ (q) splits completely in Z

[
1 +

√
p∗

2

]
, (1)

and this will take a bit of algebraic number theory.

Note thatGal(Q(ζp)/Q) ∼= Z/(p−1), so there is a unique intermediate quadratic extension
corresponding to the subgroup Z/p−1

2 . We can explicitly construct this quadratic extension by
considering the Gauss sum

∑p−1
i=1

(
−1
p

)
ζip =

√
p∗. This shows that this quadratic extension is

indeed given byK = Q(
√
p∗).

Let α be a prime of Z[1+
√
p∗

2 ] lying over (q) and let β be a prime of Z[ζp] lying over (q). Be-
cause (q) is unramified in both these extensions, we have isomorphisms

The key to the proof of 1 will be to consider the Frobenius element ϕ ∈ Gal(Q[ζp]/Q) asso-
ciated to β. We recall that this is the element which acts by ϕ(x) = xq on Z[ζp]/β, which can
be concretely realized as the element of the Galois group sending ζp to ζqp . If q is a quadratic
residue, then the subgroup generated by ϕ has index 2 and fixesK. Otherwise, it cannot con-
tain this subgroup and thus cannot fixK. Thus, to prove 1 it suffices to show

ϕ fixesK ⇔ (q) splits completely in Z
[
1 +

√
p∗

2

]
. (2)

To do this, consider the restriction ofϕ toK. As an element ofGal(K/Q), this is a Frobenius
element associated to α. Now since ϕK generates Gal(OK/α/Z/q), it fixingK is equivalent to
the triviality of that group, which is equivalent to q splitting in OK , as desired.

Exercises

1. Determine which primes split in the ring of integers of Q[
√
−q∗].

2. Determine the splitting behavior of all primes in the ring of integers of Q[
√
n] for all n.

3 Power residue symbols

We can naïvely try to generalize quadratic reciprocity by simply replacing squares with nth
powers. In fact, this approach does work and was what mathematicians historically consid-
ered. By the time of class field theory this perspective had already been thoroughly engulfed
in deeper theories, but it is still useful to start here.
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3.1 Definition of power residue symbols

Power residue symbols directly generalize Legendre symbols. Recall that we may define Leg-
endre symbols in the following way:(

a

p

)
= a

p−1
2 (mod p).

where a ∈ Z and p is an odd prime.

In particular, the target is a 2nd root of 1 in Z/p as long as p ∤ a. If we want to generalize
this definition to nth powers, we first need to work over a number field K containing Q(ζn).
Then Z is replaced with OK , p is replaced with a prime ideal p ⊂ OK not dividing (n), and the
target is OK/p.

Definition 3.1. With the above setup, for any a ∈ OK , the nth power residue symbol is defined as(
a

p

)
n

:= a(N(p)−1)/n

where the result, if nonzero (i.e. a ̸∈ p), is taken as an nth root of unity in OK/p.

For this definition to make sense, we need to know the following facts.

1. (N(p)− 1)/n is an integer.

2. a(N(p)−1)/n is equivalent to an nth root of unity (mod p).

Proof. The first is a corollary of the following fact: the nth roots of unity 1, ζn, . . . , ζn−1
n lie in

distinct residue classes inOK/p. Indeed, because
∏n−1

i=1 (1− ζin) = n, if p divides the ideal gen-
erated by any of the 1− ζin, then it divides (n), contradiction.
Thus µn, which of size n, is a subgroup of the multiplicative group of the finite field OK/p,
which has size N(p)− 1. The result follows from Lagrange’s theorem.

For 2, since |(OK/p)∗| = N(p) − 1, we have xn ≡ 1 (mod p) where x := a(N(p)−1)/n. Then
p|
∏n

i=1(x− ζin), and since p is a prime ideal it divides the ideal generated by one of the terms,
so we are done.

As with the Jacobi symbols, we can extend this definition so that the denominator can be
any ideal in OK . Namely, if I = pc11 · · · pckk is an ideal of OK , then

(a
I

)
n
:=

k∏
i=1

(
a

pi

)ci

n

.

A classical result extending quadratic reciprocity to some higher powers is given by the
Eisenstein reciprocity law.

Theorem 3.2 (Eisenstein reciprocity). Let l be an odd prime, let a be an integer relatively prime
to l, and let α be a primary element of Z[ζl] relatively prime to a. Then(α

a

)
l
=
( a

α

)
l
.

Rather than discussing this result further here, we refer the reader to [IR82] for a discussion
andproof. Instead, wewill discuss amore general result, knownas the reciprocity law for power
residues. To formulate it, we need to useHilbert symbols (a, b)p, whichwewill soon define. The
law states:
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Theorem 3.3 (Power reciprocity law). LetK be a number field containing the nth roots of unity.
If a, b ∈ K∗ are relatively prime to each other and to n, then(a

b

)
n

(
b

a

)−1

n

=
∏
p|n∞

(a, b)p.

This is a vast – though far from the most general – generalization of quadratic reciprocity,
which can be recovered by setting K = Q and n = 2. It in turn can be deduced from a more
natural formulation, known as the Hilbert reciprocity law.

Theorem 3.4 (Hilbert reciprocity). For a, b ∈ K∗ we have∏
p

(a, b)p = 1.

3.2 Hilbert symbols – first definition

We will need to think a bit about local fields in order to make sense of this reciprocity law for
power residues. The prototypical example of a local field is the field of p-adic numbers Qp, so
for simplicity we will stick with Qp here.

Hilbert symbols work for every n, but they are easiest to define for n = 2. For a fixed n, the
ideas is that we can define a local version of the Legendre symbol, i.e. one for every prime p.
Then Hilbert reciprocity tells us something about what happens when we patch them all up,
and this implies quadratic reciprocity.

Definition 3.5. The Hilbert symbol for n = 2 is the bilinear pairingQ∗
p/(Q∗

p)
2 → {±1} defined by

(a, b)p =

{
1 ax2 + by2 = 1 has a solution in Q2

p

−1 otherwise.

The fact that it is bilinear; i.e. (a, bc)p = (a, b)p(a, c)p is highly nontrivial and we will only
see it later when we give a completely different interpretation of the Hilbert symbol. While
one must understand this alternate definition to fully appreciate where the Hilbert symbol is
coming from, one can still see from the given definition that it is hinting at detecting squares.
Indeed, as the definition implies, if a is a square in Q∗

p then (a, b)p = 1 by setting x2 = a−1

and y = 0. So this is sort of asking if a is a square ‘modulo b’ in a certain sense, and has the
advantage of being evidently symmetric in a and b (this is special to the case of n = 2; in
general they are reciprocals of each other).

Remark. In the statement of Hilbert reciprocity, a and b come from the number field K. The
notation (a, b)p we are implicitly taking a and b insideKp via the natural embeddingK ↪→ Kp.

Let us now check that the power reciprocity law and Hilbert reciprocity both specialize to
quadratic reciprocity when K = Q and n = 2. For simplicity we will just take the case of two
primes, though this method works for the general case with Jacobi symbols as well. First we
compute some Hilbert symbols. If we take a = p, b = q distinct odd primes, then if r is a differ-
ent odd prime then (p, q)r = 1. Indeed, use the Pigeonhole principle to get a solution (mod p),
and then apply Hensel’s lemma. Next, we see that (p, q)p =

(
q
p

)
and (p, q)q =

(
p
q

)
. Now we

check when px2 + qy2 = 1 has solutions in Q2
2. Here Hensel’s lemma allows us to lift solutions

in Z/8Z, so checking the remaining cases gives (p, q)2 = (−1)(p−1)(q−1)/4. Finally, (p, q)∞ asks
if there is a solution in R, which holds since p and q are taken to be positive.
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Now the power reciprocity law gives(
p

q

)(
q

p

)
= (p, q)2(p, q)∞ = (−1)(p−1)(q−1)/4,

as desired. Hilbert reciprocity gives the exact same result.

4 Local class field theory and Hilbert reciprocity

The power reciprocity law marks a certain endpoint in the development of reciprocity laws as
viewed as indicators of power residues. However, its connection toHilbert reciprocity indicates
the way to a road beyond, leading to class field theory.

4.1 Local class field theory

In order to fully appreciate the next step in the development of reciprocity laws, namelyHilbert
reciprocity, we will discuss some results of local class field theory. The gist of the connection
is that these nth power indicators are really a special case of norm groups, which are used to
describe the abelian extensions of local fields.

The main theorems of local class field theory can be summarized as follows.

Theorem 4.1 (Local reciprocity law). Let K be a nonarchimedean local field. Then the commu-
tative diagram below satisfies the following properties.

K∗ Gal(K/K)ab

K∗/N(L∗) Gal(L/K)

ϕK

ϕL/K ,∼=

(a) Let π be a uniformizer ofK and let L be an unramified extension ofK. Then ϕK(π) acts by
the Frobenius on FrobL/K on L.

(b) When restricted to any finite abelian extension L/K, we obtain an isomorphism

ϕL/K : K∗/N(L∗) ∼= Gal(L/K).

(c) [Local existence theorem] Every open subgroup of finite index of K∗ can be realized as the
norm group N(L∗) of some finite abelian extension L/K.

Remarks. (a) Part (a) holds for any choice of π and any finite unramified extension, not just the
abelian ones.

(b) The result holds for any finite extensionL if we replaceGal(L/K)with its abelianization
Gal(L/K)ab. The maps ϕK and ϕL/K , or their inverses are known has local reciprocity maps.
They induce an isomorphism between K̂∗ and Gal(Kab/K).

(c) The converse holds and is much easier to prove.

Example 4.2. Consider the extension L/K = Qp(ζn)/Qp, where (n, p) = 1. This is an unram-
ified extension. Indeed, Qp[ζpm−1] is the unique unramified extension of Qp of order m, and
if (n, p) = 1 then Qp(ζn) is contained in such a cyclotomic extension. We will illustrate what
the isomorphism ϕL/K gives us in this instance, and in particular compute the norm group
NQp(ζn)/Qp

(Qp(ζn)
∗).
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Since L/K is unramified we have

Gal(Qp(ζn)/Qp) ∼= Gal(Fp[ζn]/Fp) ∼= Z/d,

where d is the order of p (mod n). This tells us that the norm group must be a subgroup of Q∗
p

with quotient group isomorphic to Z/d. We have

Q∗
p
∼= Z∗

p × ⟨p⟩ ∼= Z/(p− 1)Z× Zp × Z.

Since L/K is unramified, we have L∗ = O∗
L ∗ ⟨p⟩. Note that NL/K(p) = pd and N(O∗

L) ⊂ Z∗
p.

Thus the norm groupNQp(ζn)/Qp
(Qp(ζn)

∗) contains Z∗
p ∗ ⟨pd⟩ ⊂ Q∗

p yet has index d; thus it must
be precisely that. In particular, this shows that N(O∗

L) = Z∗
p.

More generally, when L/K is an unramified extension of local fields, the example above
generalizes to show thatN(O∗

L) = O∗
K . However, it is also possible to prove this without using

class field theory. This is left as an exercise.

4.2 Kummer theory

An important example of local class field theory arises from Kummer theory. If a fieldK con-
tains n distinct roots of unity (i.e. contains the roots of xn− 1 and has characteristic relatively
prime to n), Kummer theory explains how abelian extensions L/K of exponent n (i.e. the lcm
of the orders of the elements) arise. Namely, they simply arise from extracting nth roots.

First, one sees that sinceK contains nth roots, the Galois group of any extension adjoining
nth roots will be abelian, as the automorphismsmultiply generators by elements ofK. The fact
that any such extension comes about this way requires some Galois cohomology or étale co-
homology. For the algebraic geometer, the Kummer sequence comes from the exact sequence
of sheaves

1 → µn → Gm
n−→ Gm → 1

on the étale site (SpecK)ét. This leads to a long exact sequence which, after applying Hilbert
Theorem 90: H1(SpecK,Gm) = 0, one obtains an isomorphism

K∗/(K∗)n ∼= H1(SpecK,µn).

Now H1(SpecK,µn) = H1(GK , µn) classifies µn-torsors over SpecK. The nontrivial ones are
Z/n-extensions ofK, and the isomorphism sends a ∈ K∗/(K∗)n to the extensionK[a1/n]/K.

The discussion above classifies cyclic extensions ofK; now what about all extensions with
exponent n? This simply requires some elementary group theory, and is left as an exercise.

Exercise 4.1. Let K be a field containing the nth roots of unity with (n, charK) = 1. Then if
L/K is a finite abelian Galois extension with exponent dividing n, we have

L ∼= K(a
1/n
1 , · · · a1/nk )

for some ai ∈ K.

From this we conclude that the maximal abelian extension of K of exponent n is given by
L = K[ n

√
K∗]. One obvious question is: is this a finite extension? And what happens when we

apply class field theory to it?

Example 4.3. Let L = K[ n
√
K∗] be the extension ofK obtained by obtaining all nth roots.

7
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First, we note that Kummer theory gives an isomorphism

K∗/(K∗)n ∼= H1(GK , µn) ∼= H1(Gal(L/K), µn)

as Gal(L/K) is the maximal abelian quotient of GK with exponent dividing n. Note that this
looks like local Artin reciprocity! Indeed, by a direct analysis we have thatK∗/(K∗)n is finite,
so L/K is indeed a finite extension. SinceGal(L/K) acts trivially on µn, the size of this Galois
group is just |Gal(L/K)| = |K∗/N(L∗)| by class field theory. But it is also equal to |K∗/(K∗)n.
Furthermore,K∗/N(L∗) has exponent n (sinceGal(L/K) does) and thus (K∗)n ⊂ N(L∗). Thus
N(L∗) = (K∗)n.

4.3 Hilbert reciprocity revisited

We will now give a new definition of Hilbert symbols, following [Neu99], V.3. With our knowl-
edge about L = K[ n

√
K∗], we will see how it generalizes the nth power residue symbols from

earlier.

LetK be a local field containing thenth roots of unity. We have the following isomorphisms
from local class field theory and Kummer theory:

Gal(L/K) ∼= K∗/K∗n, Hom(Gal(L/K, µn) ∼= K∗/K∗n.

We recall that the second one is defined by associating α ∈ K∗/K∗n with σ(α)/α. Taking these
isomorphisms into account, we obtain a nondegenerate bilinear pairing

(−,−)p : K
∗/K∗n ×K∗/K∗n → µn.

This is the Hilbert symbol. First, let us note that local class field theory provides us with
the following definition.

Definition 4.4 (local norm residue symbol). The local norm residue symbol

(−, L/K) : K∗ → Gal(L/K)ab

is defined by the local Artin map.

When we set L = K( n
√
b), we get

(a,K(
n
√
b)/K)

n
√
b = (a, b)p

n
√
b.

The following result, which takes some work, connects the Hilbert symbols to the power
residue symbols, which we recall were defined by(

a

p

)
n

:= a(N(p)−1)/n.

Proposition 4.5 ([Neu99], p. 336). Setting a = π, a uniformizer, we have(
b

p

)
= (π, b)p.

Wenow leave the question of reconciling this approach toHilbert symbolswith the previous
one as an exercise.

Exercise 4.2. Identifying this definition of the Hilbert symbol with the previous one given in
the case of n = 2.
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The benefit to this new definition is that bilinearity is clear. From the local norm residue
symbol interpretation, we see that (a, b)p = 1 implies that a is a norm in the extensionK( n

√
b)/K.

Furthermore, the nondegenerate condition indicates that if (a, b)p = 1 for all b ∈ K∗, then
a ∈ K∗n. One can also prove that (a, b)p = (b, a)−1

p .

We restate Hilbert reciprocity.

Theorem 4.6 (Hilbert reciprocity). IfK is a number field and a, b ∈ K∗, then∏
p

(a, b)p = 1

where p ranges over all places ofK.

In the next section, we will deduce Hilbert reciprocity from global Artin reciprocity.

5 Artin reciprocity and the global theory

Global class field theory has a long and interesting history. Nowadays there are twomain ways
to state it: in terms of ideals and in terms of idèles. Using idèles, the reciprocity statement
becomes simple and mirrors that of local class field theory. Another major benefit is that it
lends itself well to next steps, namely Tate’s thesis and its generalization to the Langlands
program.

5.1 Statements of the main theorems

LetK be a global field, e.g. a number field. Then the ring of adèlesAK consists of the restricted
product of all completionsKv (including at the infinite places), i.e., with almost all entries in
Ov. Then the idèles are defined as IK = A∗

K . The ring of idèles takes the place of the group of
unitsK∗

v in local class field theory.

Theorem 5.1 (Artin reciprocity). There exists a global Artin map ϕK : IK → Gal(Kab/K) sat-
isfying the following properties.

(a) The global Artin map satisfies ϕK(K×) = 1.
(b) For every finite abelian extension L/K, ϕK induces an isomorphism

ϕL/K

∼=−→ IK/(K× ·Nm(IL)) → Gal(L/K).

Theorem 5.2 (existence theorem). Let CK = IK/K× be the idele class group. For every open
subgroup N ⊂ CK of finite index, there exists a unique finite abelian extension L/K such that
Nm(L/K) = N .

The fact that the global Artin map factors through the idèle class group CK = IK/K∗ is a
difficult and key part of class field theory. The global Artinmap extends to give an isomorphism

ĈK
∼= Gal(Kab/K).

The construction of the global Artin map arises directly from the construction of each in-
dividual local Artin map. Namely, we have a commutative diagram

K∗
v Gal(Lw/Kv)

IK Gal(L/K)

ϕv

ϕ|L

where the top arrow is the local Artin map and the bottom arrow is the global Artin map re-
stricted to Gal(L/K). Proving this map indeed satisfies all the properties of the theorems is
very involved.
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5.2 Recovering Hilbert reciprocity

By choosing various field extensions ofK in the statement of Artin reciprocity, we obtain var-
ious reciprocity laws. We recover Hilbert reciprocity by considering the case of L = K[b1/n].

Here, we donot use the isomorphismbetween the quotient of the idèle group and theGalois
group, but rather the fact that the global Artin map is trivial when restricted to K×. Indeed,
by the construction of the global Artin map, for any a ∈ K∗ we have

1 = ϕK(a) =
∏
v

ϕKv(b) =
∏
v

(a,Kv[b
1/n]/Kv) =

∏
v

(a, b),

as desired.
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