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1 Introduction

1.1 Motivation

Hilbert’s Nullstellensatz is very important for many reasons, but chief among them are the following 2:

1. It provides a vast generalization of the fundamental theorem of algebra and the theorem on con-

sistency of linear systems

2. It provides a concrete connection between geometric objects (affine varieties) and algebraic objects

(ideals in rings). This is a very important basis for algebraic geometry

1.2 History

• David Hilbert was one of the most important and influential mathematicians of the twentieth

century

• In many ways he set the course of mathematics for the twentieth century (axiomatization of geom-

etry, embracing Cantor’s set theory, etc.)

• He was considered a ”universalist” in that he contributed widely to most areas of mathematics at

the time

• This presentation will pick up where the last one left off and consider some of his other important

results related to invariant theory and algebraic geometry

[6]

1.3 Mathematical Preliminaries: Definitions

• Affine Space: Kn with no structure for some field K (i.e. just points in K with n coordinates)
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• Zero Set: For an ideal of polynomials J ∈ K[x1, ..., x−n], V (J) := {(a1, ..., an) ∈ Kn|f(a) = 0∀f ∈

J}

• Ideal of subset of Affine Space: For X ⊆ Kn, I(X) := {f ∈ K[x1, ..., xn]|f(x) = 0∀x ∈ X}

• Noetherian Ring: A ring such that every ascending chain of ideals eventually stabilizes (there is a

maximal ideal in the chain)

• Algebra: A vectorspace with (bilinear) multiplication defined between vectors

Note that Algebraic Varieties are ”essentially” zero sets, though their modern definition has been

generalized. However, we will use them as zero sets.

Example of Zero Set: For x2 + 1 ∈ C[x],±i is its zero set

Example of Ideal: For i ∈ C, I(i) = (x− i) (the ideal generated by (x-i)).

1.4 Mathematical Preliminaries: Results

Definition: Maximal Ideal: In a ring R an ideal m is maximal if ̸ ∃m′ such that m’ is a proper ideal

containing m (i.e. ̸ ∃m′ st m ⊊ m′ ⊊ R)

Theorem: For a ring R and an ideal m, m is maximal if and only if R/m is a field

2 Nullstellensatz

Noether Normalization is an important algebraic result en route to the Nullstellensatz. In addition to

that, it has important geometric consequences in its own right.

2.1 Introductory Concepts for Noether Normalization

Finitely generated Algebra vs Finite Algebra:

Suppose A is an algebra over B. Then A is

finitely generated over B if ∃a1, ..., an ∈ A st A = B[a1, ..., an]

a finite algebra over B if ∃a1, ..., an ∈ A st A = a1B + ...+ anB

Example of finitely generated but not finite algebra:

For a ring R consider R[x]. This is a finitely generated algebra (we just append x), but it is not a

finite algebra, as suppose we could write it finitely: y1R + ... + ymR. Choose N = maxdeg(yi). Then

consider xN+1 ̸∈ y1R+ ...+ ymR. So we cannot have R[x] = y1R+ ...+ ymR

2.2 Statement of Noether Normalization

Theorem: Suppose K is a field. Let A = K[a1, ..., an] be a finitely generated K-algebra. Then

∃y1, ..., ym ∈ A,m ≤ n st:
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1. y1, ..., ym are algebraically independent over K (̸ ∃0 ̸≡ f ∈ K[x1, ..., xn] st f(y1, ..., ym) = 0)

2. A is a finite K[y1, ..., ym] algebra

i.e. If B = K[y1, ..., ym] then A = c1B + ...+ clB for some ci ∈ A

Essentially this theorem tells us ”finite extensions of polynomial rings are relatively easy to deal

with.”

2.3 Geometric Interpretation of Noether Normalization

Noether normalization considers algebraic sets as (finite) covers of Affine Space

Example: [4]

”Algebraic sets are covers of Affine Space.” We can get an includsion (via a finite extension) of

K[x1, ..., xm] into an Algebraic Set A, and the variety associated with A projects surjectively onto the

linear space associated with K[x1, ..., xm]

More formally, let X be a variety in Kn, and assume X is irreducible.

Consider A = K[a1, ..., an] = K[x1, ..., xn]/I(X) (ai = xi mod I).

Then ∃ algebraically independent y1, ..., ym st A is a finite K[y1, ..., ym] algebra.

Then we can define a projection (i.e. surjective map) ϕ : X → Km st ∀z ∈ Km, ϕ−1({z}) is finite

Pictorally (simple model):
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2.4 The Nullstellensatz Formally Stated

Theorem: Let K be algebraically closed, A = K[x1, ..., xn]. Then:

1. Every maximal ideal m in A is of the form m = (x1 − a1, ..., xn − an) = I(P ), P ∈ Kn

2. If J ⊊ A is a proper ideal, then V(J)=0

Equivalently, any set of polynomials f1, ..., fm ∈ K[x1, ..., xn] has a common zero unless ∃g1, ..., gm ∈

K[x1, ..., xn] st g1f1 + ...+ gmfm = 1

3. For every ideal J ⊆ A, I(V (J)) =
√
J

That is, f(x1, ..., xn) = 0∀(x1, ..., xn) ∈ V (J) ⊆ Kn ⇐⇒ fr ∈ J for some r ∈ N

(3) can be phrased of as: ”The set of all polynomials that vanish on the points that vanish on all

polynomials in J is the radical of J, that is, all the polynomials that, when raised to some power, are in

J”

Significance:

Condition (2) is a vast generalization of the Fundamental Theorem of Algebra and the theorem on

consistency of linear systems

Condition (1) is an explicit connection between Algebra and Geometry: Maximal ideals in polynomial

rings (Algebra) are in correspondence with points in Affine Space (geometry)

(In general, ideals correspond to subsets of Affine Space, which is a corollary)

This Theorem forms the backbone for much of modern algebraic geometry, and has a great many

consequences.

2.5 Nullstellensatz Proof Ingredients

Theorem: Let K be an infinite field and A = K[a1, ..., an] a finitely generated K-Algebra. If A is also

a field, then A is algebraic over K (any element in A is a root of polynomials over K).

This theorem given follows from Noether Normalization. It requires some other algebraic results, so

we shall not prove it.

Recall: R/m is a field if and only if m is a maximal ideal.

Recall: Every proper ideal in a Noetherian ring is contained in some maximal ideal.

2.6 Proof of the Nullstellensatz

1.

i. We begin by proving (x1 − a1, ..., xn − an) is maximal

Consider the evaluation map ϕP : K[x1, ..., xn] → K, f 7→ f(P ), P ∈ Kn

By a simple coordinate change we take a1 = a2 = ... = an = 0
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Then we get that K[x1, ..., xn]/(x1, ..., xn) ∼= K

This is intuitive (we are just removing all the nonconstant terms) but also we can see this through

an application of the first isomorphism theorem: f ∈ kerϕ ⇐⇒ f(0, ..., 0) = 0 ⇐⇒ cf = 0

where cf is the constant term in f. So The kernel is all polynomials without constant terms. Then

we also note that we can get any element in K by choosing cf appropriately for some f (e.g. just

consider all the constant functions for each element in K). Then by the first isomorphism theorem we

get K[x1, ..., xn]/(x1, ..., xn) ∼= K.

ii. Now we will prove that any maximal ideal is of the form (x1 − a1, ..., xn − an).

Assume m is a maximal ideal in K[x1, ..., xn]. Then K̃ = K[x1, ..., xn]/m is a field. We also have that

K̃ is a finitely generated K algebra, as it can be realized as K̃ = K[[x1], ..., [xn]] where each [xi] = xi

mod m. So (by the theorem given to us by Noether Normalization) K̃ is algebraic over K. But K is

algebraically closed, so K̃ = K.

Then consider the isomorphism ϕ : K ↪→ K[x1, ..., xn]
π−→ K[x1, ..., xn]/m = K̃

Consider ai = ϕ−1([xi]). We note that π(xi − ai) = [xi] − [xi] = 0 =⇒ xi − ai ∈ kerπ ∀i ∈

{1, ..., n}.But note also kerπ = m

So we must have that (x1 − a1, ..., xn − an) ⊆ m. But the first term is maximal (by part i) hence we

must get that (x1 − a1, ..., xn − an) = m

2. 1 =⇒ 2

Suppose J ⊊ A = K[x1, ..., xn] is a proper ideal. Then K[x1, ..., xn] is Noetherian =⇒ ∃ a maximal

ideal m st J ⊆ m

By 1, we have m = I(P ) for some P ∈ Kn

Then {P} = V (I(P )) ⊆ V (J) =⇒ V (J) ̸= ∅

Note V(I(P)) is ”all points that vanish on the ideal generated by polynomials that vanish at the point

P,” hence it is trivially P.

Since J is a subset of I(P), it has less polynomials in it. Think of this as having ”less constraints.”

That is to say, at the very least all the polynomials in J vanish at P, but they could vanish at more

points. Hence the subset in the above, and thus the nonemptyness of V(J).

3. 2 =⇒ 3

This will be proved with something called the Rabinowitsch trick, whereby we will introduce an

additional variable (thus meaning we work in a new polynomial ring) and do some algebraic trickery

before eventually returning to our original polynomial ring.

If you don’t like proofs that rely simply on algebraic dark magic, then I apologize, you will not enjoy

this proof. Nevertheless, it is related to localization.

Let J = (f1, ..., fm) ⊆ K[x1, ..., xn], f ∈ V (J)

Consider the ideal (f1, ..., fm, 1− tf) ∈ K[x1, ..., xm, t] for t a new variable (thus we have moved into
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a new polynomial ring.

Since f vanishes at all the points where all the fi simultaneously vanish, this new ideal has no zeros

(because wherever the first m vanish, 1-tf becomes 1, not 0). Hence, by the above, it generates the unit

ideal.

So this tells us ∃g1, ..., gm, g ∈ K[x1, ..., xn, t] such that

g · (1− tf) +

m∑
i=1

gi · fi = 1 ∈ K

Now t is just a variable, so equality will hold for all substitutions we make. So let us substitute

t = 1
f(x1,...,xn)

. Note that when we make this substitution, we now move into the field of fractions (AKA

field of rational functions) K(x1, ..., xn), since we now have xi terms in the denominator. Thus we get:

g · (1− 1

f
· f) +

m∑
i=1

gi(x1, ..., xn,
1

f(x1, ..., xn)
) · fi(x1, ..., xn,

1

f(x1, ..., xn)
))

=

m∑
i=1

gi(x1, ..., xn,
1

f(x1, ..., xn)
) · fi(x1, ..., xn,

1

f(x1, ..., xn)
)) = 1

Now note that the only expressions in the denominator of the terms in the bottom line are f(x1, ..., xn)
li

for some exponent li, so we can rewrite these all as polynomials using some common denominator

r = lcm(li). Hence we get

1 =

m∑
i=1

hi(x1, ..., xn) · fi(x1, ..., xn)

f(x1, ..., xn)r

Then by simply multiplying out the denominator we get fr =
∑m

i=1 hi · fi where now all of terms are

back in K[x1, ..., xn].

Note now that
∑m

i=1 hi · fi ∈ J =⇒ fr ∈ J .

But this tells us that any polynomial that vanishes on the points on which all the polynomials in J

vanish is in the radical of J. That is V (J) =
√
J . So we’re done!

2.7 Immediate Corollaries of Nullstellensatz

[5]
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2.8 Nullstellensatz Example

Consider f(x, y) = 8x+5y−3, g(x, y) = 2xy+5+4x, h(x, y) = 4xy−5y+14. We can see that f-2g+h=1.

Therefore the ideal generated by these polynomials has an empty zero set.

2.9 A Note on Philosophy of Proof

It’s interesting to note that Hilbert’s original proof was controversial and not immediately widely accepted

due to the fact that it was nonconstructive; it didn’t tell you how to find the zero set of the ideal.

This is a good reminder that mathematical proofs are fundamentally sociological constructions, they

depend on the shared agreement of the mathematical community. We like to think of mathematical

proofs as expressing a form of ultimate truth, that once we deriving something from the axioms it’s

immutably true, but this isn’t an accurate description of reality.

This isn’t just a problem fo the past. For a modern incarnation of this same problem, consider

Mochizuki’s claimed proof of the abc conjecture.

3 The Syzygy Theorem

3.1 Pre-Syzygy: Modules

The Syzygy theorem primarily concerns modules and their generators.

Think of modules as generalizations of vector spaces, but instead of being over fields they’re over

rings.

Vector spaces have bases, modules have generators which may not be independent.

Free module: A module with a basis (i.e. linearly independent generators).

We will mostly work with the free module Rn = R × ... × R for some ring R, which is analogous to

the vectorspace Kn for some field K.

3.2 Syzygys

Definition: A module M is said to be finitely generated over a ring R if ∃z1, ..., zn ∈ M st ∀x ∈ M,x =

m1r1 + ...+mnrn, for ri ∈ R

The zi are the generators of M

Definition: A syzygy is a set of (a1, ..., an ∈ Rn st a1z1 + ... + anzn = 0 for the zi generators of a

finitely generated module M over R.

Proposition: A syzygy is a submodule of Rn

We can encode syzygys as kernels of maps from free modules. This is best illustrated by example

Example of Syzygys as Kernels:[7]
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Consider I = (x2, xy) as a module over Z/n[x, y] = R (ideals are modules over their rings).

Consider the map ϕ0 : R2 → I, e1 7→ x2, e2 7→ xy. Here e1, e2 are analogous to their vectorspace

counterparts (i.e. e1 =

1
0

 and vice versa for e2).

Clearly ϕ0 is surjective. Note however we have a nontrivial kernel. Indeed, kerϕ0 = (

−y

x

) since

(−y)x2 + x(xy) = 0. Let us encode this within another map.

Consider ϕ1 : R → R2, 1 7→

−y

x

. Thus we have imϕ1 = kerϕ0.

Thus we have an exact sequence (called a free resolution):

0 → R
ϕ1−→ R2 ϕ0−→ M → 0

A natural question to ask is if this sequence always terminates, or is it possible to keep going to the

left, keep getting more syzygys of syzygys of syzygys and so on.

3.3 Syzygy Theorem

Theorem: Let R = K[x1, ..., xn]. Then every finitely generated R module has a free resolution of length

≤ n.

3.4 Example of Syzygys Applied

The Syzygy Theorem is an important theorem for solving problems in invariant theory. It is now

considered an early result in homological algebra (the exact sequence given above may have caused you

to recall the homology introduced by Tony in a previous week).

Here is an example, taken from Richard Borcherds (more examples in his video)[2]

Consider the group An ⊆ Sn acting on C[x1, ..., xn], where every permutation acts by permuting the

factors of xi. We want to consider the polynomials invariant under all permutations.

Note that, by definition, all elementary symmetric polynomials are invariant. In addition, we get

that ∆ =
∏

i<j(xi − xj) is invariant under all elements in An. Then we have that ∆ is not independent

from the elementary symmetric functions ei. In the case of n=2, this relationship can be displayed as

follows:

∆2 = e21 − 4e2. Hopefully this looks vaguely familiar from the discriminant of a quadratic: ∆2 =

b2 − 4ac.

Then we get that the ring of invariant polynomials under An is generated by e1, ..., en,∆ with a

syzygy as defined above.
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