zen Chapter 2 : Intersection Multiplicities

Introduction ">multiplicity_of_zeros> When we talk about a polynomial, like f(x), having a zero
at a point xo, we can say how many times it touches the x-axis at that point. This is called the "multiplicity" of the zero
ex). If f(x) crosses the x-axis at x. (like a straight line), we say it has a multiplicity of 1.
 If f(x) JUST touches the x-axis and turns around (like a parabola), we say it has a multiplicity of 2 or higher.
$f \qquad f \qquad$
X ₀ X.
f = (X-Xo)g f = (X-Xo) ² g multiplicity 1 multiplicity 2
<pre><intersection curves="" of=""> Now, instead of just one curve, we can look at two curves F and 6 on a graph. The intersection point P is where these two curves meet.</intersection></pre>
·If F and G cross each other at P with different angles, w say their intersection multiplicity is 1.→ means they are intersecting nicely, like two straight lines crossing.
• If they are touching at the same angle, or if they both have similar slopes at P, then we say they have a higher intersection multiplicites. (2 or more)
G F G P
multiplicity 1 multiplicity 2
> if the graph flattens out at the x-axis (like a "U" shape), it's touching the axis, meaning the multiplicity is at least 2.

	(Singular points)
	sometimes, curves can have points where they behave
	weirdly, like being flat or crossing over themselves.
	These points are called singular points. At these points,
X	it's not straight forward to determine the intersection
	multiplicity just by looking.
	<constructing i·m=""></constructing>
	To analyze how curves intersect, we need to develop a way
	to measure this intersection for any two curves, not just
	simple cases. This is what the concept of intersection
	multiplicity aims to achieve -> For this we need the following algebraic object that allows us to capture the local geometry of the plane around a point.
	(Dof 212
	Definition 2.1 (Local rings of A ²), Let PEA ² be a point.
	ca) The local ring of A ² at P is defined as
	$O_P : O_{A^2,P} := \left\{ \frac{f}{2} : f,g \in K[x,y] \text{ with } g(P) \neq 0 \right\} \subset K(x,y).$
	(b) It admits a well-defined ring homomorphism
	f(P) where we will call the eveloper more
	$O_p \longrightarrow K, \frac{1}{2} \longrightarrow \frac{1}{2} (P)$ Which we will call the evaluation map.
	Its kernel will be denoted by
	$I_{P} := I_{A^{2}}, P := \left\{ \frac{f}{g} : f, g \in K[x, y] \text{ with } f(P) = 0 \text{ and} \right\}$
	$g(p) \neq o \gamma \subset O_{p}$
	(In this definition,>
	· Op represents the local ring at point P.
	·f'and g are polynomial from the polynomial ring K[X,y]
	where K is the field over which the polynomials defined
	·The condition g(p) = 0 ensures that the denominator
	does not vanish at the point P, allowing us to
	evaluate these fractions near P.

The local ring Op contains functions that behave nicely near P. It allows us to focus specifically on those functions that remain defined and provide meaningful values around the point we are interested in
By using local rings, we can analyze the intersection multiplicity µP(F,G) more rigorously. The dimension of the quotient <u>Op</u> gives us a precise measure of how F and <f,g? a="" and<="" f="" gives="" how="" measure="" of="" precise="" th="" us=""></f,g?>
CRemark 2,27
 recall that the local ring at a point P in the affine plane A^2 is defined as $Op = \{f, g \in K[x, y] \text{ with } g(P) \neq 0\}$
This set contains fractions of polynomials where the denominator does not vanish at point p.
 < geometric interpretation> The remark States that Op describes "nice" functions around point P. —> means that the functions in Op are well defined and behave smoothly in the neighborhood of P. In simpler terms, these functions are feliable for calculation and visualizations near P.
 The local ring helps us focus on a small area around P. This is important because the global behavior of a curve may not reflect how it behaves right at the intersection or nearby.
 Algebraic intersection> The remark mentions that Op is a subring of K(x,y), where K(x,y) is the field of rational functions. This means that every element of Op is a rational function, but only those that are well-defined at P. Being a subring implies that it contains 0 and 1 and is closed under addition and multiplication, which are essential
 Properties for a ring. The local ring Op is also an integral domain. → means it has no zero divisors. In simpler terms, if the product of
two elements is zero, at least one of those elements must be zero. • This is crucial property for ensuring that the functions we are working with have meaningful thteractions.

T

	<units and="" elements="" irreducible=""></units>
	• The remark states that the units in Op are precisely the
	fructions I for which both f and g are non-zero at P.
<u>`</u>	Units are elements that have a multiplicative inverse in the ring, which helps in understanding which functions are
	INVERTIBLE IN THIS CONTEXT.
	which are polynomials that cannot be forced into simpler
	at p and let us know the local behavior of the curves at that
	Finally, it emphasizes that Op is a local ring in the algebraic serve, meaning it contains exactly one maximal ideal, denoted as Ip.
	This means all other ideals in Op either are contained in Ip or
	equal Op itself. The maximal ideal consists of tunctions that vanish at P.
	<pre><pre>CDef 2.37</pre></pre>
	For a point PE A ² and two curves (or polynomials) F and G we define the intersection multiplicity of F and G at P to be
	$\mu_{P}(F,G) := \dim O_{P}/\langle F,G \rangle \in \mathbb{N} \cup \{\infty\},$
	where dim denotes the dimension as a vector space over k.
	<pre><in definition.="" this=""></in></pre>
	curves F and G at the point P. It is the key quantity
	$\langle F C \rangle$; taught the ideal complete by the curves F and C
	Within the local ring op. This ideal consists of all functions that can be expressed as combinations of F and G with
	coefficients in Op.
	dim Op/ <f,g>: refers to the dimension of the quotient gives us insight into how the curves intersect at point P.</f,g>
	$\rightarrow \cdot If \mu_{D}(F,G) = 1$, it indicates F and G intersect
	transversely at P (they cross nicely)
	• It up (1,6)/1, it suggests that the curves touch or overlap in a more complicated way at that point.
	• · · · • • • • • • • • • • • • • • • •

	(Remark 2.4)
	(a) It is clear from the definitions that an invertible affine transformation from (x,y) to
<u></u>	$(x',y') = (ax+by+c, dx+ey+f)$ for $a,b,c,d,e,f \in K$ with $ae-bd \neq o$
	gives us an isomorphism between the local rings Op and op , where p' is the image point of p; and between Op/ <f,g> and Op//<f,g> where F' and G' are F and G expressed</f,g></f,g>
	in the new coordinates x' and y'. We will often use this invariance to simplify our calculations by picking suitable coordinates , e.g. such that P=0 is the origin.
	• This property states that if you change the coordinates in a way that preserves the structure of the space (by using an invertible linear transformation). The local rings
	at the original point P and the transformed point Prwill be isomorphic.
	• In simpler terms, if you change the way you look at the curves, Cby shifting or rotating the axes), the local behavior near the intersection remains the same.
	(b) The intersection multiplicity is symmetric : we have µp (F,6) = µp (G,F) for all F and G.
	 This property highlights that the order of the curves F and G does not matter when calculating intersection multiplicity, whether you look at how F intersects G or how G intersects F, the multiplicity will be the same This is a reflection of the symmetric nature of intersec in geometry.
	(c) For all F,G,H we have $(F,G+FH) = \langle F,G \rangle$, and thus $\mathcal{M}_p(F,G+FH) = \mathcal{M}_p(F,G)$
	 This property indicates that if you add a multiple of one curve to another (in this case, G+FH), the intersection multiplicity with respect to a third curve F remains unchanged. Essentially, adding more complexity to one curve does not affect how it intersects with another curve at point P.

	(Lemma 2.57) Let $P \in A^2$, and let F and G be two curves (or polynomials).
	We have: (a) $\mu_p(F,G) \ge 1$ if and only if $P \in F \cap G$
<u> </u>	(b) $\mu_p(F,G) = 1$ if and only if $(F,G) = I_p$ in Op.
	(a) → means if the intersection multiplicity is non-zero, it confirms that the point P must be on both curves. If Pis not on either curve, they cannot intersect there, and thus the multiplicity is zero.
	 (b) The second part States that µp(F,G) = 1 iff the ideal generated by F and G, denoted as <f,g>, is equal to the ideal Ip in the local ring Op.</f,g> → This indicates that for the intersection multiplicity to be exactly one, the only functions that vanish at p must be those generated by the curves F and G. i.e., at P, F, and G touch each other just once without overlapping further. This represents a simple intersection where the two curves cross at a single point
	<u>proof</u> : Assume first that F(P) ≠0. Then F is a Unit in Op, and thus (F,G) = Op. i.e., up(F,G) = 0. moreover, we then have P∉F and F∉Ip, proving both (a) and (b) in this sense. Of course, the case G(P)≠0 is analogous.
	So we may now assume that $F(P) = G(P) = 0$. i.e., $P \in F(G)$. Then the evaluation map at P induces a well-defined and surjective map $O_P / \langle F, G \rangle \rightarrow K$.
	It follows that Up(F,G)≥1, proving (a) in this case. Moreover, we have Up(F,G)=1 if and only if this map is an isomorphism. i.e., if and only if <f,g> is exactly the Kernel Ip of the evaluation map.</f,g>