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5. Analytic Continuation

alternating zeta function
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6. Riemann Hypothesis

claim of all non-trivial zeros ofS have real part ofI

powerful consequences

distribution of prime numbers

7 Brief Overview of Different Types of Zeta Functions
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Dirichlet L-functions

Artin L-functions

Dedekind Zeta functions

Zeta functions of schemes (especially over finite fields (

·

"twisted zeta function"
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arithmetically equivalent fields

arithmetic zeta function
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is multiplication in the ring WCEL of With rectors of the integers

zeta functions of disjoint unions

meomorphic continuation

·

generalized Riemann hypothesis


