November 15,2029												
.1. History												
· Riemonn zeta function												
hamonic series \$(1); divergent, 14th century												
hermonic. Series >(1>; divergent, 19th century.												
18th combing, Eulor, \$(2)												
13. (animo) Enter, 3(2)												
- 19th century, Riemann, 5 as complex												
* 1859 paper												
Riemann hygethesis												
2. Definition and Bosic Properties $S(x) = \sum_{n=1}^{\infty} \frac{1}{n^{n}} = \sum_{n=1}^{\infty} n^{-x}$												
$5(x) = \sum_{n=1}^{\infty} \frac{1}{n^{2}} = \sum_{n=1}^{\infty} n^{-n}$												
· · · · · · · · · · · · · · · · · · ·												
. domain of 5 on \$5 E C Re(53 > 13												
Proof in rectore												
Fruit IN LEGNING.												
3. Euler Product												
$J_{k=1}^{\infty} = \prod_{k=1}^{\infty} \frac{1}{1-p_{k}^{-2}}$												
^μ =ι Ι- ρ _K ⁻⁵												
Proof in lecture												
infinitude of the prime numbers												
Proot in lecture												
. ditticulty of evoluation of infinitude product and	all p	rime a	amber	' \$								
3 study using summation definition												
4. Evaluating Zeta at Particular Points												
consideration of computer												
Weiterstrass Factorization Theorem												
$f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} E_{p_n}\left(\frac{z}{a_n}\right)$												
example with sin s.t. $sin(TTZ) = TTZ \prod_{n=1}^{20} (1)$	- 22)										
	N*											

.0,	.5 \$.1											
•												
t												
											$\mathbf{S}_{\mathbf{p}}$, $\mathbf{s} \neq 1$	

. ' ^[] _c (s)= (2π) ^{-s} ^[] (s).		
$\sum_{k} (t) = \frac{1}{2} (t_{\ell} + \frac{1}{2}) V_{k} (\frac{1}{2} + t_{\ell})$		
. Emotional equation		
. ΄ Λ _κ (s)= Λ _κ (s-s)		
· · · · · · · · · · · · · · · · · · ·		
. ' Ξ _κ (, Ξ _κ (
$\lim_{s\to 0} s^{-s} S_{k}(s) = -\frac{h(k)R(k)}{w(k)}$		
140 YE		
. • e= e,+e,-1		
arithmetically equivalent fields		
arithmetic zeta function		
$\int_{\infty} \int_{\infty} \int_{\infty} \frac{1}{1 - N(n)^{-1}} dn$		
. ' ,5 _x (s) =, <u>1</u>		
· · · · · · · · · · · · · · · · · · ·		
. ' . Š _v (s)= Z(X, 9 ^{-s})		
. ` ?(X,t) * ?(Y,t) = ?(X = Y,t)		
	rs	
Beta functions of disjoint unions.		
meanarable continuation		
generalized Riemann hypothesis		