Lie Correspondence

Chang Yoon Seuk (uni: (54056)

Fundamental theorems of Lie theory (3 main results)

Initially, we have seen that for a Lie group Gr, with Lie algebra g, the exponential map exp: g --- by is a local homeomorphism. So Lie algebras are locally determined by Lie groups. The main theorem we want to show is :

Theorem A) The functor Lie: $G_{T} \longrightarrow \text{Lie}(G)$ is to be an equivalence of categories. i.e. The assignment { simply - connected Lie groups } - Lie > { Lie algebras f is functorial.

Theorem B) For any Lie group G (real or complex), there is a bijection between

connected Lie subgroups $H < G_1$ and Lie subalgebras $H < g_1$, given by the Lie functor. Observation of Thm A)

Definition [Categories]. Informally, a mathematical structure consist of objects and maps or morphisms between objects. Two main axioms : associativity and identity Definition [functor]. Let C, D be two categories. A functor $F: C \longrightarrow D$ is an assignment that 1) Assigns $c \mapsto F(c)$ for each $c \in C$, 2) To each morphism $f: C_1 \longrightarrow C_2$ in C_1 a morphism $F(f): F(c_1) \rightarrow F(c_2)$ Two rules : 1) Identity FLide) = id F(c), 2) Composition F(gof) = F(g) o F(f). Definition. A functor $F: C \longrightarrow D$ is an equivalence of categories if 1) F is fully faithful. This means, for every pair of objects c1, c2 in C, the map F: Hom, (C1, C2) -> Hom, (FCG), F(C2)) is a bijection. i.e. F induces a one-to-one correspondence between morphisms in C and D.

2) F is essentially surjective on objects. For every object $d \in D$, there exists $c \in C$

, such that d is isomorphic to F(C)

Definition [simply-connected]:) Path - connected Trivial fundamental group

Definition [Puth-connected]. A topological space T is path-connected if, for every points $x, q \in T$, there exists a continuous map $\gamma : [0,1] \longrightarrow T$, such that $\gamma(u)=z$ and $\tau(1)=q$. Definition [Homotopy of paths] let f and f' be continuous maps of the space X into the space Y, we say f is homotopic to f' if there is a continuous map $F: X \times I \longrightarrow Y$, such that F(x,0)=f(z) and F(x,1)=f'(z) for each x. ($I=L^{0},1$)]. Equivalently, homotopy of loops $H: I \times I \longrightarrow X$, with two loops l, l_2 at $z_0 \in X$ defined by $H(s,0)=l_1(s)$, for all $s \in I$ $H(0,t)=H(I,t)=z_0$ for any $t \in I$ i.e. Homotopy of loops is that one can be constantly deformed into the other. While keeping fixed based point z_0 . Definition [Fundamental group] $T_1(X, z_0)$: set of path homotopy classes of loops based at z_0 , with the group operation *. The group operation is given by

concatenation of loops: $[l_1] \cdot [l_2] = [l_1 * l_2]$, where $(l_1 * l_2)(t) = [l_1(2t), 0 \le t \le s$ Trivial fundamental group is then $\Pi_1(X, Z_0) \subseteq \{e\}$, meaning, every loop at Z_0 is homotopically equivalent to the constant loop.

e.g. Π_1 (contractible X) = O. We know that a space X is contractible if the identity map $id_X : X \longrightarrow X$ is homotopic to a constant map C_{∞} , such that $H : X \times [0,1] \longrightarrow X$, for all $x \in X$ defined by H(Z, v) = X and $H(Z, 1) = X_0$. So, we can see $\Pi_1(\mathbb{R}^n) = O$

e.g.) $\Pi_1(S') \cong \mathbb{Z}$ (Idea from covering spaces $P:\mathbb{R} \to S'$, $P(t) = e^{2\pi i t}$, which is universal cover of S'. Any loop in S' can be lifted to a path in \mathbb{R} , and we consider integer as loops' winding number. i.e. n > 0 : l goes counterclockwise n times

> n < o: // clockwise) nl times n = o: contracted to a base point.

Rmk. We can also view Π_1 as a functor between categories $\Pi_1: \operatorname{Top}^1_* \longrightarrow \operatorname{Group}$ Top_{*} is the category of topological space with pairs (X, x_0) . We have action on objects and action on morphisms $f:(X, x_0) \longrightarrow (Y, y_0)$, then $\Pi_1(f): \Pi_1(X, x_0) \longrightarrow \Pi_1(Y, y_0)$, defined by composition of loop L in X, $\Pi_1(f)[L] = LfoLJ$. So, Π_1 is a well-defined functor. Rmk. Lie group functor Lie: { Lie groups $i \longrightarrow \{ \text{Lie algebras } j \text{ defined by } \{f: G \longrightarrow H \} \longmapsto \{f_{\#}: TeG \longrightarrow TeH \}$

Now, we have shown definitions contained in Theorem A, then we split this into Theorem A.) If G., G2 be Lie groups and G1 is connected and simply-connected, then $Hom(g_1, g_2) = Hom(G_1, G_2)$, where g_1, g_2 are Lie algebras of G_1, G_2 respectively. Theorem A2 [Lie's third theorem]) Any finite - dimensional (real or complex) Lie algebra is isomorphic to a lie algebra of Lie group. To prove A, we first need to prove than B. We have two approaches. Proof 1) Using Baker - Campbell - Hausdorff (BCH - formula) We need to construct a Lie subgroup $H \prec G$, for every Lie algebra $H \subset g$. Assume that HCg is a Lie Subalgebra. We wish to produce a connected Lie subgroup $H \lt G$, with Lie (H) = h. The key step is to show $exp(h) \subset G$ generates a subgroup, and that subgroup is locally closed under multiplication by BCH. Now, for any $x, y \in H \subset \mathcal{G}$, and by BCH, we consider $exp(z)exp(y) \in G$. This is because we already know exp(x)exp(y) = exp(BCH(x,y)), where BCH $(X,Y) = X + Y + \frac{1}{2} [X,Y] + \frac{1}{12} [X,[X,Y]] - \frac{1}{12} [Y,[X,Y]], ... is an infinite series$ of nested commutators. Since h is a subalgebra of 9, all those nested commutators remain in h. Hence, $B(H(x,y) \in h$, and thus, $exp(x) exp(y) = exp(B(H(x,y)) \in h$. Next, for the connected Lie algebra of H, let H° be connected subgroup generated by exp(h). i.e. the identity component generated by exp(h). But, since BCH remains in h, which implies $T_e(H^\circ) \supset H$, we easily see Lie(H°) = H. To sum, we have shown Lie subgroup $\xrightarrow{\text{Lie}}$ Lie subalgebra and Lie subalgebra $\xrightarrow{\text{Lie}}$ Lie subgroup ⊢→ Lie (H I (exp(h))= H H h Nence, there is a bijection between connected Lie subgroups and Lie subalgebras given by the Lie functor

Proof 2) Requires some background in differential geometry.

[Sketch of the proof] We will introduce theorems by Frobenius and the following lemma. Theorem [Frobenius integrability criterion]

A distribution D on a smooth manifold M is completely integrable if and only if for any two vector fields $u, v \in D$, one has $[u, v] \in D$.

<u>Theorem</u>. Let D be a completely integrable distribution on manifold M (smooth). Then, every point $p \in M$, there exists a unique connected immersed integral in Submanifold $N \subset M$ of $D \ni p$, and it is maximal.

Remark) An immersed: the submanifold $N \subset M$ is immersed integral manifold for V if, for every $p \in N$, the immerse of the map $dl_N : TpN \longrightarrow TpM$ is Vp.

Remark) Integrable distribution : A n-dimensional distribution on a manifold M is a n-dimensional subbundle $D \subset TM$. Formally, for all $p \in M$, we have n-dimensional subspace $Dp \subset TpM$ (smoothly depends on P). We can see this in ODE, which is a well-known notion of directional field. In differential geometry, for a vector field V, we write $v \in D$, if for every point P, we have $v(P) \in Dp$. A straightforward generalization of integral curve is then the integral manifold for a distribution D is a n-dimensional submanifold $X \subset M$, such that for every $p \in X$, we have $T_P X = DP$. Now, for a given Lie group for with Lie subalgebra $h \subset g$, corresponds to H < G, we notice that if H exists, then at every point $P \in H$, $T_P H = (TeH)p = h \cdot P$. So, our H H will be an integral manifold of the distribution D^h , where $D_p^h = h \cdot P$. Then we have the following lemma to construct H. Lemma For every point $g \in G$, there is locally an integral manifold of

the distribution D^h containing g, denoted H[°].g, where H[°] = exp U for some neighborhood U of O in h.

Using this lemma, we can prove our theorem B.

Now, we will show A_1 . By the result of the B, we already know morphisms of Lie groups define morphisms of Lie algebras. And, for a connected Lie group G_1 , the map Hom $(G_1, G_2) \longrightarrow$ Hom (g_1, g_2) is injective. So, we are only left to show surjectivity. This means, every morphism of Lie algebras $f: g_1 \longrightarrow g_2$ can be lifted to a morphism of Lie groups $Q:G_1 \longrightarrow G_2$ with $Q_* = f$. We define $G_1 = G_1 \times G_2$, then Lie algebra of G_1 is now $g_1 \times g_2$. Let $h = \{x, f(x) \mid x \in g_1 \} \subset g$, which is subalgebra, and obviously it's a subspace. So, we can express this as a commutator:

$$[(x, f(x)), (y, f(y)] = ([x, y], [f(x), f(y)]) = ([x, y], f([x, y]))$$

Then by B), there is a corresponding connected Lie supgroup $H \longrightarrow G_1 \times G_2$. We can compose this embedding by projection $P: G_1 \times G_2 \longrightarrow G_1$, and we get a morphism $\pi: H \longrightarrow G_1$ with $\pi_*: h = \text{Lie}(H) \longrightarrow g_1$. (view π as a covering map) In fact, since G_1 is simply -connected, H must be connected, π must be isomorphism. i.e. we also have $\pi^{-1}: G_1 \longrightarrow H$. Now, we construct a map $U: G_1 \longrightarrow G_2$ as a composition $G_1 \xrightarrow{\pi^{-1}} H \longrightarrow G_1 \times G_2 \longrightarrow G_2$; clearly, this is a morphism of Lie groups. Also, $U_*: g_1 \longrightarrow g_2$ is a composition. $\pi \longmapsto (\pi, f(\pi)) \longmapsto f(\pi)$

Hence, we have lifted f to a morphism of Lie groups, so the functor Lie is surjective. Proof of A_2 : Lie's third theorem [Ref. Terrance Tao on Ado's theorem] In the special case of using adjoint representation $Ad: \mathcal{G} \longrightarrow End(\mathcal{G})$ on itself defined by the action $X: Y \longmapsto [X,Y]$; the Jacobi identity ensures that Ad is a representation of \mathcal{G} . The kernel is the centre $\mathcal{F}(\mathcal{G}) = \{X \in \mathcal{G} : [X,Y] = 0, \text{for all } Y \in \mathcal{G}\}$. In this case, \mathcal{G} is semi-simple. Now, Ado's theorem says, assume that \mathcal{G} is a finite dimensional Lie algebra over a field kwith characteristic O, then there is a faithful finite dimensional representation of \mathcal{G} , which is an embedding $\mathcal{G} \longrightarrow \mathcal{G}(N,k)$ for some N. Cartan also gave different approach Proof of A_2 left as a challenge!