
HISTORICAL OVERVIEW OF LIE THEORY

CALEB JI

Abstract. We give a brief historical overview of Lie theory beginning with the work of Lie. Along
the way, we introduce the fundamental definitions of Lie groups and Lie algebras and a few other
essential notions. All the material here is well-known, with the historical parts coming from [2, 3, 1].

1. Sophus Lie

1.1. In lieu of a biography. Sophus Lie (1842 – 1899)was a profoundly original Norwegianmath-
ematician. He studied science at the University of Christiana (now Oslo), but didn’t show any
particular affinity to mathematics at the time. Instead, he considered being an astronomer. This
naturally led him to read the work of Plücker, learning the cutting-edge geometry of the time. His
interest soon shifted to mathematics, and he went to Berlin to learn from the top mathematicians
of the day. While he met Kummer, Kronecker, and Weierstrass there, their style of mathematics
didn’t attract him. Instead, he met another visitor, Felix Klein, with whom he shared a close affin-
ity. Despite different personalities and backgrounds, they were both geometers at heart.

The initial subject which united Lie and Klein was the study of line complexes. Plücker had
initiated a theory of geometry in which lines, rather than points, were the basic building blocks.
This point of view is taken for granted today in projective geometry, and Plücker’s viewpoint his
commemorated through Plücker coordiantes on Grassmannians.

From here, Lie’s personal story takes many twists and turns, from being mistaken for a spy,
taking opium, and the breakdown of his relationship with Klein, his student Engel, and others.
Beginning his mathematical life as an outsider, his tremendous creativity and forceful character
carried him to grand new heights inmathematics as well as acerbic conflicts. Details may be found
in , and is good material for further discussions. For now, we will focus on his mathematics.

1.2. Transformation groups and Lie’s theorems. In Lie’s time, the notion of a manifold had
not yet been fully formalized. This did not prevent Lie from proving many results of relevance
to manifolds. Indeed, the notion of a Lie group is that of a manifold endowed with a compatible
group structure, but Lie himself focused on the group theory and the local aspects.

Definition 1.1 (group). A group G is a set G endowed with a binary operation ∗ : G × G → G
satisfying the following properties:

• (Identity) There exists an identity element e ∈ G such that e ∗ g = g ∗ e = g for all g ∈ G
• (Inverses) For all g ∈ G, there exists an inverse element h such that gh = hg = e.
• (Associativity) a ∗ (b ∗ c) = (a ∗ b) ∗ c

You are familiar with many examples of groups: (Z,+), (R,+), (Z/nZ,+), ((Z/nZ)∗,×), Sn, but
the ones of most interest in Lie theory are those such as (GL(n,R),×).
Groups like (GL(n,R),×) are interesting first of all because they have a geometric structure

((R,+) does as well) via viewing the matrix entries as coordiantes in space, which makes them
into a Lie group. (We will discuss these in more detail later.) From another perspective, they
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act on spaces (Rn in this case), and thus can be viewed as transformation groups. Lie took this
viewpoint and developed the theory of transformation groups in great detail. He related them to
infinitesimal transformation groups, which are known today as Lie algebras. The relation between
them can be summarized by Lie’s three theorems.

Theorem 1.2 (Lie’s first theorem). If two Lie groups are locally isomorphic, then so are their Lie
algebras.

Theorem 1.3 (Lie’s second theorem). If G andH are Lie groups with G simply connected and there
exists an isomorphism f between their Lie algebras, then f lifts to an isomorphism between G andH.

Theorem 1.4 (Lie’s third theorem). Every finite-dimensional Lie algebra is the Lie algebra of a Lie
group.

Lie didn’t state and prove these theorems exactly in this form; e.g. the third one in the form
stated above is due to Cartan, and is thus sometimes called the Cartan-Lie theorem. These results
hold for both real and complex Lie groups.

Aside from Lie theory itself, Lie authored thousands of pages of quality research on topics such
as differential equations, contact geometry, minimal surfaces, and the Erlangen program. How-
ever, his personal relations soured, even with Engel, toward whom he had been a close mentor.
Lie’s student Engel contributed to Lie’s work on transformation groups and was responsible for
authoring a large part of their joint work. Engel also began sharing Lie’s ideas with one Wilhelm
Killing, which ended up negatively affecting his relationship with his former mentor. However,
this led to incredible and unexpected new mathematics by Killing which gave new life to Lie the-
ory.

2. Wilhelm Killing

2.1. Fast facts. WilhlemKilling (1847 – 1923) was a Germanmathematician who studied atMün-
ster and then at Berlin. He did his thesis underWeierstrass and spent the next ten years in Brauns-
berg. Thoughmathematically isolated there, Killing produced remarkable andoriginalwork, reach-
ing the study of Lie algebras independently of Lie. He eventually came into contact with Engel and
Lie, and while he continued a productive correspondence with Engel, his personality clashed with
Lie. Nevertheless, he is responsible for one of the most significant results in all of mathematics:
the classification of semisimple Lie algebras. Killing was a German patriot and a lover of tradition,
philosophy, and the classics. His later life was filled with tragedy, from the collapse of German
society after WWI to the loss of his children.

2.2. Lie algebras. Lie himself wasn’t much concerned with the study of Lie algebras themselves,
but Killing was. Abstractly, a Lie algebra is defined as follows.

Definition 2.1. A Lie algebra g is a vector space over a field equipped with an alternating bilinear
map g× g → g, denoted by brackets, satisfying the Jacobi identity:

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

The basic example of a Lie algebra is gl(n,R), with Lie bracket given by [x, y] = xy − yx. While
Lie algebras can be defined over arbitrary fields, for nowwewill stick with the real or complex case.
Lie algebras come from Lie groups, as stated in Lie’s three theorems, but since we haven’t even
formally defined manifolds yet, we will postpone discussion of this to the next section. Instead,
let us explain the notion of simple and semisimple Lie algebras, which Killing’s result is about.

Definition 2.2. A simple Lie algebra is a nonabelian Lie algebra with no non-zero proper ideals.
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By requiring the Lie algebra to be nonabelian, we are excluding Lie algebras where the Lie
bracket is always 0. Indeed, since the Lie bracket is alternating, if [a, b] = [b, a] then it is also
equal to −[b, a], and provided we are not in characteristic 2 this implies [a, b] = 0. For the defi-
nition of ideal, recall that an ideal I in a commutative ring R is an additive subgroup such that
rI ⊂ I for all r ∈ R. In the context of a Lie algebra g, this condition becomes [g, x] ∈ I for all
g ∈ g, x ∈ I.
There are several equivalent ways to define semisimple Lie algebras.

Definition 2.3. A Lie algebra is semisimple if it satisfies one of the equivalent (over characteristic 0)
conditions:

• It is a direct sum of simple Lie algebras.
• Its Killing form is non-degenerate.
• Its radical is 0.

Giving the definition of the Killing form and radical now may make them seem uninspired or
arbitrary, which is not at all the case. We will return to them later in the semester when we have
more context. For now, we will simply state the classification.

2.3. Classification of semisimple Lie algebras. Killing’s classification of semisimple Lie alge-
bras is stated through root systems. A root system is given by a certain finite graph which rep-
resents geometrical properties which we will explain in detail when we get to this point in the
seminar. For now, we will just draw them. The root systems below correspond to the simple Lie
algebras, while semisimple Lie algebras are given by unions of them.

3. Élie Cartan and Hermann Weyl

3.1. Brief historical background. Élie Cartan (1869 – 1951) and Hermann Weyl (1885 – 1955)
were legendary mathematicians who contributed greatly to the shaping of mathematics in the
early twentieth century (one could also include Élie’s son, Henri Cartan, in this statement). While
Cartan was began his doctorate at the École Normale Supérieure, he came across Lie and Killing’s
work and set about to complete it. Indeed, Cartan reworked much of Killing’s work on Lie alge-
bras, introducing his own ideas, and perfected their classification in his thesis. This was just the
beginning of his work in Lie groups, which Cartan developed to a new level of maturity. As would
characterize 20th century mathematics to come, Cartan codified new structure and built new the-
ory that would support research for years to come. This was true not only in Lie theory but also
differential geometry and surrounding fields.

Cartan was aided in his endeavors by the incredible work of HermannWeyl. One ofWeyl’s many
key contributions was the precise definition of a manifold. While mathematicians had implicitly
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worked withmanifolds for some time, laying the foundations in this way allowed them to gomuch
further in the years to come. Weyl would go on to develop Lie theory further through his work in
representation theory, with the Weyl integration formula and the Weyl character formula being
two important theoremswhich bear his name. Weylwas a universalmathematician, akin toHilbert
before him. Along with Cartan he also greatly contributed to mathematical physics and relativity,
which use their earlier work on differential geometry and Lie groups.

3.2. Manifolds and Lie groups.

Definition 3.1. A (topological)manifold is aHausdorff topological space that is locally homeomorphic
to Rn around every point.

There are variants to this definition; e.g. second-countability of the topological space is as-
sumed, but these considerations will not be important for us. Sometimes people want to differ-
entiate between topological, differentiable, or smooth, or analytic manifolds. In such cases it is
better to take the following definition: A manifold consists of an open covering {Ui} and an atlas
of maps ui : Ui → Rn, which are each homeomorphisms onto Rn, such that the transition maps
ui ◦ u−1

j : Rn → Rn are continuous/differentiable/smooth/analytic. Two atlases are equivalent if
their union is an atlas. Not all atlases are equivalent on a given manifold; this leades to the highly
interesting phenomenon of multiple smooth structures on a manifold.

In this class, we will be primarily interested in smooth manifolds.

Definition 3.2. Given smooth manifoldsM,N with atlases {Ui}, {Vj}, a smooth map f : M → N is
one such that the induced transition maps vj ◦ f ◦ u−1

i are smooth.

Now we come to the definition of a Lie group.

Definition 3.3. A Lie group G is a smooth manifold with a group structure given bym : G×G → G
(multiplication) and i : G → G (inversion) such thatm and i are smooth.

A homomorphism of Lie groups is given by a map f : G → H which is simultaneously a smooth
map and a group homomorphism.

An important point to mention is that complex manifolds and complex Lie groups also exist.
These are important even for the study of Lie theory over R, but for the time being we will focus
on the real case.

Definition 3.4. The tangent bundle TM of a manifoldM of dimension n is a manifold of dimension
2n constructed as follows.
Given an atlas ϕi : Ui → Rn, we take TM to be the union of all Ui ×Rn under the equivalence rela-

tion (x, v) ∼ (x, ϕjϕ
−1
i v) where x ∈ Ui ∩ Uv.

The tangent bundle naturally comes with a projection TM → M with each fiber simply being Rn.
The tangent space TxM for x ∈ M is this fiber; these vector spaces fit together to form the tangent
bundle.

There are other ways to think about tangent spaces. For example, one definition of the tangent
space TxM is an equivalence class of all smooth curves parameterized by p : [−1, 1] → M with
p(0) = x, with the equivalence class being p ∼ q if p′(0) = q′(0). This approach has the advantage
of being very intuitive.

3.3. Examples of Lie groups.

Example 3.5. (1) Rn is a Lie group under addition.
(2) The torus Tn : (S1)n ∼= (R/Z)n is a Lie group under addition.
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(3) The general linear group GL(n,R) of n× n invertible matrices is a Lie group under multi-
plication.

(4) The orthogonal group O(n,R) consists of matirces A with AAT = In. The special orthog-
onal group SO(n,R) is the subgroup of O(n,R) with determinant equal to 1.

(5) The symplectic groupSp(2n,R) consists ofmatricesA that preserve an alternating bilinear

form. That is, if Ω =

(
0 In

−In 0

)
, then we take A such that ATMA = M .

Let us motivate the definition of the symplectic group a bit by reinterpreting the orthogonal
group with some linear algebra. We can think of the orthogonal group as the matrices which pre-
serve a certain symmetric bilinear formB, namely the one given by the identity. Indeed, a form is
given by B(v, w) = wTBv, and changing basis gives B′ = ATBA.

Let us now explain one non-trivial result, showing that the group structure in a Lie group does
indeed have concrete (and non-obvious) geometric consequences. A manifold is called paralleliz-
able if its tangent bundle ist trivial, i.e. isomorphic toM × Rn. This is equivalent to there being
a set of n smooth vector fields; i.e., smooth sections of TM → M , which generate TxM at each
x ∈ M . For example, Rn itself is parallelizable, and so is S1.
It turns out that any Lie group is parallelizable. Indeed, if g is the tangent space of a Lie group

G at the identity, we have an isomorphismG× g ∼= TG given by (g, v) 7→ (g, Lg∗v. Indeed, the fact
that Lg (left multiplication by g) is smooth and a homeomorphism implies that this is indeed an
isomorphism. Alternatively, one can think of left multiplication by g as moving a basis of g around
G to form the desired vector fields.

Which surfaces admit a Lie group structure? We have already seen that the torus (genus 1) does,
but the sphere S2 does not. Indeed, the hairy ball theorem implies that S2 is not parallelizable.
What about higher genus?

Theorem 3.6 (Poincaré-Hopf). A vector field v on a compact differentiable manifoldM with isolated
zeroes satisfies

∑
x∈M indx(v) = χ(M).

Here the index indx(v) is an integer (which we will not define here) which is non-zero only when
v is zero at x. Thus for a surface S of genus g, this theorem says that

∑
x∈S indx(v) = 2− 2g. Thus

if g ̸= 1, then every vector field must have a point where it is zero, or else the sum on the right
would be non-zero.

Corollary 3.7. The only compact orientable surfaces that admit a Lie group structure are those with
genus 1.

Proof. If S forms a Lie group, then it is parallelizable and thus it has everywhere non-vanishing
vector fields. By the Poincaré-Hopf theorem, this can only occur for tori. □

4. Claude Chevalley, Alexander Grothendieck and Michel Demazure

We will not discuss the work of Chevalley, Grothendieck, and Demazure at this time, except to
say that they arguably brought Lie theory into its modern form through their work on algebraic
groups. Specifically, Chevalley first redid almost the entire theory, then moved on with Borel to
algebraic groups, which can be thought of as combining group and variety rather than group and
manifold. Bringing in the techniques of algebraic geometry, he opened up a whole new chapter
to Lie theory. Then Grothendieck and his student Demazure developed the entire theory over
arbitrary base schemes in SGA 3 in the 1960s. We likely will not have much time to say muchmore
about their highly interesting work (or about their highly interesting lives) in this class, but we
may see a bit of it at the end.
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