Roots and the Weyl Group

Song Yan

Feb 28, 2025

Contents

The Conjugation Action and Its Differential	1
Linear Actions of S^1 and Tori2.1 Complex Actions of S^1	2 2
Weight Decomposition and Roots3.1 Restriction to a Maximal Torus3.2 Definition of Roots	2 2 3
The Weyl Group4.1Definition4.2Examples4.2.1Type A: $G = U(n)$ 4.2.2Type B: $G = SO(2n+1)$ 4.2.3Type C: $G = Sp(n)$ 4.2.4Type D: $G = SO(2n)$ 4.2.5Type E: $G = E_6$	3 4 4 5 5 6
	The Conjugation Action and Its DifferentialLinear Actions of S^1 and Tori2.1 Complex Actions of S^1 Weight Decomposition and Roots3.1 Restriction to a Maximal Torus3.2 Definition of Roots3.2 Definition of RootsThe Weyl Group4.1 Definition4.2 Examples4.2.1 Type A: $G = U(n)$ 4.2.2 Type B: $G = SO(2n + 1)$ 4.2.3 Type C: $G = Sp(n)$ 4.2.4 Type D: $G = SO(2n)$ 4.2.5 Type E: $G = E_6$

1 The Conjugation Action and Its Differential

Definition 1.1 (Conjugation Map). Let G be a Lie group. For each $g \in G$, define the *conjugation map*

$$c_g: G \to G, \quad c_g(h) = ghg^{-1}.$$

Definition 1.2 (Adjoint Representation). Let G be a Lie group with Lie algebra \mathfrak{g} . The *adjoint representation* of G is the map

$$\operatorname{Ad}: G \to \operatorname{Aut}(\mathfrak{g}), \quad \operatorname{Ad}(g) = d(c_g)_e,$$

where $d(c_g)_e$ is the differential of c_g at the identity e of G.

Proposition 1.3. Ad : $G \to Aut(\mathfrak{g})$ is a Lie group homomorphism; that is, for all $g_1, g_2 \in G$,

$$\operatorname{Ad}(g_1g_2) = \operatorname{Ad}(g_1)\operatorname{Ad}(g_2).$$

Proof. For any $g_1, g_2 \in G$ and $h \in G$, we have:

$$c_{g_1g_2}(h) = g_1g_2hg_2^{-1}g_1^{-1} = c_{g_1}(c_{g_2}(h)).$$

Taking the differential at e and applying the chain rule yields:

$$d(c_{g_1g_2})_e = d(c_{g_1})_e \circ d(c_{g_2})_e,$$

so that

$$\operatorname{Ad}(g_1g_2) = \operatorname{Ad}(g_1)\operatorname{Ad}(g_2).$$

2 Linear Actions of S^1 and Tori

2.1 Complex Actions of S^1

Lemma 2.1. Let S^1 act linearly on a finite-dimensional complex vector space V. Then there exists a basis in which the action is diagonal. Specifically, for $z = e^{i\theta} \in S^1$,

$$z \cdot v = \operatorname{diag}(e^{in_1\theta}, e^{in_2\theta}, \dots, e^{in_k\theta}) v,$$

for some integers n_1, \ldots, n_k .

Definition 2.2. A character of S^1 is a group homomorphism $\chi: S^1 \to S^1$. Every character is of the form $\chi(e^{i\theta}) = e^{in\theta}$

$$\chi(e^{i\theta}) = e^{in\theta}$$

for some $n \in \mathbb{Z}$.

Remark 2.3. Since every complex representation of S^1 is diagonalizable, it follows that any finite-dimensional complex representation of a maximal torus T (which is isomorphic to a product of copies of S^1) decomposes as a direct sum of one-dimensional subrepresentations (i.e., characters).

3 Weight Decomposition and Roots

3.1 Restriction to a Maximal Torus

Let T be a maximal torus in G with Lie algebra \mathfrak{t} . Since T is abelian, every finite-dimensional complex representation of T decomposes into one-dimensional subrepresentations (characters). In particular, the restriction of the adjoint representation of G to T yields a decomposition of \mathfrak{g} into eigenspaces.

Proposition 3.1 (Weight Decomposition). Let G be a compact Lie group and T a maximal torus in G. Then the Lie algebra \mathfrak{g} decomposes as

$$\mathfrak{g}=\mathfrak{t}\oplus igoplus_{\lambda\in\Lambda\setminus\{0\}}\mathfrak{g}_{\lambda},$$

where for each linear functional $\lambda \in \mathfrak{t}^*$,

$$\mathfrak{g}_{\lambda} = \{ X \in \mathfrak{g} : \operatorname{Ad}(t)X = e^{2\pi i \,\lambda(\log t)}X \quad \text{for all } t \in T \},\$$

and Λ is the set of all weights.

3.2 Definition of Roots

Definition 3.2 (Roots). A nonzero weight $\alpha \in \mathfrak{t}^*$ is called a *root* of G (or of \mathfrak{g}) with respect to T if

 $\mathfrak{g}_{\alpha} \neq \{0\}.$

The set of all roots is denoted by $\Phi \subset \mathfrak{t}^* \setminus \{0\}$.

4 The Weyl Group

4.1 Definition

Definition 4.1 (Normalizer and Weyl Group). Let T be a maximal torus in a connected, compact Lie group G. The *normalizer* of T is defined by

$$N_G(T) = \{g \in G : gTg^{-1} = T\}.$$

Since T is abelian, it is a normal subgroup of $N_G(T)$. The Weyl group of G with respect to T is the quotient group:

$$W(G,T) = N_G(T)/T.$$

Proposition 4.2. The Weyl group W(G,T) is finite.

Proof. Define the natural surjection

$$\frac{N(T)}{T} \twoheadrightarrow \frac{N(T)}{N_0(T)}, \quad \text{ker} = \frac{N_0(T)}{T}.$$

To show $N_0(T) = T$, suppose, for contradiction, that $N_0(T) \supseteq T$.

Then there exists

$$X \in \operatorname{Lie}(N_0(T)) \setminus \mathfrak{t}.$$

Since T is abelian and $N_0(T)$ is connected, the conjugation action of $N_0(T)$ on t is trivial, implying

$$[X, \mathfrak{t}] = 0$$

Hence $\mathfrak{t} + \mathbb{R}X$ is an abelian Lie subalgebra. Set

 $A = \exp(\mathfrak{t} + \mathbb{R}X),$

which is a connected abelian subgroup strictly containing T, contradicting the maximality of T.

Thus $N_0(T) = T$. Consequently,

$$W(G,T) = \frac{N(T)}{T} = \frac{N(T)}{N_0(T)},$$

a finite group.

4.2 Examples

4.2.1 Type A: G = U(n)

Example 4.3. Let G = U(n) be the group of $n \times n$ unitary matrices.

A standard maximal torus is

$$T = \{ \operatorname{diag}(e^{i\theta_1}, e^{i\theta_2}, \dots, e^{i\theta_n}) : \theta_j \in \mathbb{R} \}.$$

Its Lie algebra is

$$\mathfrak{t} = \{ \operatorname{diag}(i\theta_1, i\theta_2, \dots, i\theta_n) : \theta_j \in \mathbb{R} \}.$$

The adjoint representation of U(n) restricted to T yields the weight spaces with nonzero weights given by:

$$\lambda_{jk}(H) = \theta_j - \theta_k, \quad 1 \le j \ne k \le n$$

These nonzero weights form the root system of U(n).

Moreover, the normalizer $N_{U(n)}(T)$ consists of all monomial unitary matrices, so that

$$W(U(n),T) \cong S_n,$$

the symmetric group on n letters.

4.2.2 Type B: G = SO(2n+1)

Example 4.4. Let G = SO(2n + 1) be the group of $(2n + 1) \times (2n + 1)$ real orthogonal matrices with determinant 1.

A maximal torus T can be chosen as

$$T = \left\{ \begin{pmatrix} R(\theta_1) & & 0 \\ & R(\theta_2) & & \\ & & \ddots & \\ 0 & & & 1 \end{pmatrix} : \theta_j \in \mathbb{R} \right\},$$

where each $R(\theta_j)$ is a 2 × 2 rotation matrix:

$$R(\theta_j) = \begin{pmatrix} \cos \theta_j & -\sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{pmatrix}.$$

The Weyl group in this case is

$$W(SO(2n+1),T) \cong (\mathbb{Z}_2)^n \rtimes S_n,$$

where the factor $(\mathbb{Z}_2)^n$ corresponds to sign changes (reflections) in each rotation block and S_n permutes the blocks.

4.2.3 Type C: G = Sp(n)

Example 4.5. Let G = Sp(n) be the compact symplectic group, defined by

$$Sp(n) = \{A \in U(2n) : A^T J A = J\},\$$

where

$$J = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}.$$

A maximal torus in Sp(n) is given by

$$T = \left\{ \operatorname{diag}(e^{i\theta_1}, \dots, e^{i\theta_n}, e^{-i\theta_1}, \dots, e^{-i\theta_n}) : \theta_j \in \mathbb{R} \right\}.$$

Its Lie algebra is

$$\mathfrak{t} = \{ \operatorname{diag}(i\theta_1, \dots, i\theta_n, -i\theta_1, \dots, -i\theta_n) : \theta_j \in \mathbb{R} \}$$

The weight decomposition of the adjoint representation shows that the roots are of the form:

 $\pm 2\epsilon_i$ and $\pm (\epsilon_i \pm \epsilon_j)$ $(1 \le i < j \le n).$

The Weyl group is again isomorphic to

$$W(Sp(n),T) \cong (\mathbb{Z}_2)^n \rtimes S_n.$$

4.2.4 Type D: G = SO(2n)

Example 4.6. Let G = SO(2n) be the group of $2n \times 2n$ real orthogonal matrices with determinant 1.

A maximal torus T in SO(2n) is given by block-diagonal matrices with 2×2 rotation blocks:

$$T = \{ \operatorname{diag}(R(\theta_1), R(\theta_2), \dots, R(\theta_n)) : \theta_j \in \mathbb{R} \}$$

Its Lie algebra is

$$\mathbf{t} = \{ \operatorname{diag}(\begin{pmatrix} 0 & -\theta_1 \\ \theta_1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & -\theta_n \\ \theta_n & 0 \end{pmatrix}) \}.$$

The weight decomposition of the adjoint representation yields roots of the form

$$\pm (\epsilon_i \pm \epsilon_j), \quad 1 \le i < j \le n.$$

The Weyl group in this case is isomorphic to

$$W(SO(2n),T) \cong (\mathbb{Z}_2)^{n-1} \rtimes S_n,$$

reflecting the fact that among the n sign changes, only an even number are permitted (to preserve the determinant 1 condition).

4.2.5 Type E: $G = E_6$

Example 4.7. The exceptional Lie group E_6 is a compact simply connected Lie group with a maximal torus of dimension 6 and the Weyl group of E_6 is defined as

$$W(E_6, T) = N_{E_6}(T)/T,$$

and it is a finite group.

This Weyl group acts on the Cartan subalgebra (of dimension 6) by reflections and encodes the symmetry of the root system of E_6 .

References

- [1] A. Kirillov, *Introduction to Lie Groups and Lie Algebras*, vol. 113 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2008.
- [2] J. Morgan, *Lie Groups Lecture 7: Tori and Weyl Groups* (2024), https://www.math.columbia.edu/~jmorgan/2024LieGroups/2024LGLecture7.pdf