Math UN1101: Calculus I, Section 1 Midterm 1 Solutions

Instructions

- Write your name and UNI clearly in the section below.
- You are NOT allowed to use class notes, books and homework solutions in the examination.
- Except for True/False questions, show all computations and work in your answer.
- Don't cheat! If it looks like you are cheating, then you are cheating.

Question	Points	Score
1	10	
2	10	
3	4	
4	6	
5	10	
6	5	
7	5	
Total:	50	

Name: \qquad

UNI:

1. (10 points) True/False 2 points each
(a) T F $f(x)=\sin ^{3}(x)$ is an even function.
(b) T F The graph of $f(-x)$ is obtained from reflecting the graph of $f(x)$ about the y-axis.
(c) T We have that

$$
\lim _{x \rightarrow 0} \frac{\sin \left(\frac{1}{x}\right)}{x+1}=\frac{\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)}{\lim _{x \rightarrow 0} x+1}
$$

(d) T F The function $f(x)=x^{3}-3 x-1$ has a root in $(-1,0)$.
(e) T F The derivative of 2^{2} is $2 \cdot 2=4$.
(You may use this area as scratchwork.)

Solution:

(a) F. We compute that $f(-x)=\sin ^{3}(-x)=(-\sin (x))^{3}=-\sin ^{3}(x)=-f(x)$. Therefore $f(x)=\sin (x)$ is odd, not even.
(b) T. The graph of $f(-x)$ is obtained from reflecting the graph of $f(x)$ about the y-axis.
(c) F. Because

$$
\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right) \text { DOES NOT EXIST }
$$

we cannot use the Quotient limit law and thus the equation above is false.
(d) T. We compute that $f(-1)=1$ and $f(0)=-1$. Because polynomials are continuous at all real numbers and in particular in the interval $[-1,0]$ the Intermediate Value Theorem shows that $f(x)$ must equal 0 at some point in $(-1,0)$ and therefore $f(x)$ has a solution in $(1,0)$.
(e) $\mathbf{F} 2^{2}=4$ is a constant. Therefore the derivative of 2^{2} is zero. You cannot apply the Power Rule here.
2. Compute the following limits, if they exist. If the limit does not exist, explain why.
(a) (3 points) $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-x-2}$

Solution:

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-x+-2}=\lim _{x \rightarrow 2} \frac{x-2}{(x-2)(x+1)} \stackrel{x \neq 2}{=} \lim _{x \rightarrow 2} \frac{1}{(x+1)}=\frac{1}{3}
$$

where we have used the fact that because $\frac{1}{(x+1)}$ is continuous at $x=2$, we can substitute $x=2$ in to evaluate the limit.
(b) (3 points) $\lim _{x \rightarrow 0} \sin ^{2}(x) \cos \left(\frac{1}{x}\right)$

Solution: Notice that $-1 \leq \cos \left(\frac{1}{x}\right) \leq 1$. Because $\sin ^{2}(x) \geq 0$ for any value of x, it follows that we have the inequality

$$
-\sin ^{2}(x) \leq \sin \left(\frac{1}{x}\right) \leq \sin ^{2}(x)
$$

Notice that $\lim _{x \rightarrow 0}-\sin ^{2}(x)=\lim _{x \rightarrow 0} \sin ^{2}(x)= \pm \sin ^{2}(0)=0$ because $\sin (x)$ is continuous so we can just plug in 0 to evaluate the limit. Therefore by the Squeeze Theorem it follows that

$$
\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{x}\right)=0
$$

(c) $\left(4\right.$ points) $\lim _{x \rightarrow 0} 4^{\frac{\sqrt{4+x}-\sqrt{4-x}}{x}}$

Solution: Because 4^{x} is continuous at all real numbers, and continuous functions commute with limits, we can bring the limit inside, e.g.

$$
\begin{equation*}
\lim _{x \rightarrow 0} 4^{\frac{\sqrt{4+x}-\sqrt{4-x}}{x}}=4^{\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-\sqrt{4-x}}{x}} \tag{1}
\end{equation*}
$$

We now compute the limit inside by rationalizing the numerator.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-\sqrt{4-x}}{x} & =\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-\sqrt{4-x}}{x} \cdot \frac{\sqrt{4+x}+\sqrt{4-x}}{\sqrt{4+x}+\sqrt{4-x}} \\
& =\lim _{x \rightarrow 0} \frac{(\sqrt{4+x})^{2}-(\sqrt{4-x})^{2}}{x(\sqrt{4+x}+\sqrt{4-x})}=\lim _{x \rightarrow 0} \frac{(4+x)-(4-x)}{x(\sqrt{4+x}+\sqrt{4-x})} \\
& =\lim _{x \rightarrow 0} \frac{2 x}{x(\sqrt{4+x}+\sqrt{4-x})} \stackrel{x \neq 0}{=} \lim _{x \rightarrow 0} \frac{2}{(\sqrt{4+x}+\sqrt{4-x})}
\end{aligned}
$$

Now notice that function in the final expression above is continuous at $x=0$ because the denominator is not 0 . Therefore by continuity we can plug in 0 to evaluate the limit and find that

$$
\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-\sqrt{4-x}}{x}=\frac{2}{\sqrt{4}+\sqrt{4}}=\frac{2}{4}=\frac{1}{2}
$$

To obtain the final answer we plug this back into Equation (1) and find

$$
\lim _{x \rightarrow 0} 4^{\frac{\sqrt{4+x}-\sqrt{4-x}}{x}}=4^{\frac{1}{2}}=2
$$

3. Please give formal definitions below.
(a) (2 points) What does it mean for a function $f(x)$ to be continuous at a point a ?

Solution: $f(x)$ is continuous at a point a if the both conditions are satisfied

- $\lim _{x \rightarrow a} f(x)$ exists
- $\lim _{x \rightarrow a} f(x)=f(a)(f(x)$ has the Direct Substitution Property at a.)
(b) (2 points) What does it mean for a function $f(x)$ to be differentiable at a point a ?

Solution: $f(x)$ is differentiable at the point a if

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \text { exists }
$$

Specifically, the limit above exists if and only if the left-handed limit equals the righthanded limits. This means that $f(x)$ is differentiable at the point a if

$$
\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}=\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{f(a-h)-f(a)}{-h}=\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}
$$

4. Consider the following function.

$$
f(x)= \begin{cases}2 & \text { if } x \leq-1 \\ x^{2}+1 & \text { if }-1<x<3 \\ \frac{1}{2-x} & \text { if } x \geq 3\end{cases}
$$

(a) (3 points) For what values of x is f not continuous at x ?

Solution: $f(x)$ is not continuous at $x=3$. To check for continuity, look at the criteria from $3(a)$.
$2, x^{2}+1$ and $\frac{1}{2-x}$ are all continuous in the regions prescribed above, so we just need to check if $f(x)$ is continuous where they meet, aka at $x=-1,3$. We first check $x=-1$

$$
\lim _{x \rightarrow-1^{-}} 2 \xlongequal{?} \lim _{x \rightarrow-1^{+}} x^{2}+1
$$

Individually on their own, both functions are continuous at $x=-1$, so to evaluate the one-sided limits is the same as evaluating the limit by plugging in -1 . Thus we see that $2=(-1)^{2}+1=1+1=2$ and so $\lim _{x \rightarrow-1} f(x)$ exists -1 . Moreover the Direct Substitution Property is automatic, as $f(-1)=2=\lim _{x \rightarrow-1^{-}} 2$. Thus $f(x)$ is continuous at $x=-1$.

We repeat the same calculation for $x=3$. Again since $x^{2}+1$ and $\frac{1}{4-x}$ are continuous at $x=3$ we can just plug in 3 to evaluate the one-handed limits.

$$
10=3^{2}+1=\lim _{x \rightarrow 3^{-}} x^{2}+1 \neq \lim _{x \rightarrow 3^{+}} \frac{1}{2-x}=\frac{1}{2-3}=-1
$$

Thus we see that $\lim _{x \rightarrow 3} f(x)$ doesn't exist so it already fails the first criteria listed in $3(a)$. Thus $f(x)$ is not continuous at $x=3$.

Many people put down that $f(x)$ is not continuous at 2 also. But notice at $2, f(x)$ is of the form $x^{2}+1$ and that $f(x)=\frac{1}{2-x}$ only when $x \geq 3$.
(b) (3 points) For what values of x is f not differentiable at x ?

Here one can use the result that if a function $f(x)$ is differentiable at a, then it must be continuous at a. Notice this means that if $f(x)$ is not continuous at a, it is not differentiable at a. Thus right from the start we know that $f(x)$ is not differentiable at $x=3$. Like before outside these values and at $x=-1 f(x)$ is either a constant, a polynomial or a rational function and so is differentiable. It remains to check $x=-1$. Using $3(b)$ we need to check if

$$
\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{f(-1-h)-f(-1)}{-h} \xlongequal{?} \lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{f(-1+h)-f(-1)}{h}
$$

Recall that $f(-1)=2$. Because $-1-h<-1$ for $h>0$, by definition, $f(x)=2$ so the left handed side above is then

$$
\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{f(-1-h)-f(-1)}{-h}=\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{2-2}{-h}=\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{0}{-h}=0
$$

We repeat the same for the right hand side above where now $-1+h>3$ for $h>0$ and so $f(x)=x^{2}+1$ and find

$$
\begin{aligned}
\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{f(-1+h)-f(-1)}{h} & =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{\left((-1+h)^{2}+1\right)-2}{h}=\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{\left(\left(1-2 h+h^{2}\right)+1\right)-2}{h} \\
& =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{-2 h+h^{2}}{h}=\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{h(-2+h)}{h} \xlongequal{h \neq 0} \lim _{\substack{h \rightarrow 0 \\
h>0}}-2+h \xlongequal{\text { cont }}-2
\end{aligned}
$$

Since the left and right handed limits (of the slopes) don't agree at $x=-1$ we see that $f(x)$ is not differentiable at $x=-1$ as well.
5. Compute the value of the derivative of $f(x)$ at the point a. If $f(x)$ is not differentiable at a, explain why.
(a) (3 points) $f(x)=x^{2}-3 \sqrt{x}, a=9$

Solution: Write $f(x)=x^{2}-3 x^{\frac{1}{2}}$ and using the power rule we see that

$$
f^{\prime}(x)=2 x-3 \frac{1}{2} x^{\left(\frac{1}{2}-1\right)}=2 x-\frac{3}{2} x^{-\frac{1}{2}}=2 x-\frac{3}{2 \sqrt{x}}
$$

Plugging in $a=9$ we see that

$$
f^{\prime}(9)=2(9)-\frac{3}{2 \sqrt{9}}=18-\frac{1}{2}=17.5
$$

(b) (3 points) $f(x)=\frac{-4}{x^{5}}, a=1$

Solution: Write $f(x)=-4 x^{-5}$ and using the power rule we see that

$$
f^{\prime}(x)=-4(-4) x^{(-5-1)}=20 x^{-6}=\frac{20}{x^{6}}
$$

Plugging in $a=1$ we see that

$$
f^{\prime}(1)=\frac{20}{1^{6}}=20
$$

(c) (4 points) $f(x)=x|x|, a=0$

Solution: We can't use the power rule here since $|x| \neq x$. Thus we need to use the definition of the derivative. In fact we claim that $f(x)$ is differentiable at $a=0$ and that $f^{\prime}(0)=0$. Using $3(b)$ We compute the right and left-handed limits of

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}
$$

As $|-h|=h$ for $h>0$, we see that

$$
\begin{aligned}
L \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} & =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{f(0-h)-f(0)}{-h}=\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{(-h)|-h|-0}{-h} \\
& =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{-h(h)}{-h} \xlongequal{h \neq 0} \lim _{\substack{h \rightarrow 0 \\
h>0}} h=0
\end{aligned}
$$

As $|h|=h$ for $h>0$ we see that

$$
\begin{aligned}
R \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} & =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{f(0+h)-f(0)}{h}=\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{(h)|h|-0}{h} \\
& =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{h(h)}{h} \xlongequal[\substack{h \neq 0}]{\lim _{h \rightarrow 0} h>0} \begin{array}{l}
\\
h>0 \\
\hline
\end{array}
\end{aligned}
$$

Since the left and right handed limits agree we see that $f(x)$ is differentiable at $a=0$ and $f^{\prime}(0)=0$!
6. (5 points) Find an equation of the tangent line to the curve $y=2 x^{3}-19 x+20$ at the point $(2,-2)$.

Solution: By definition, the equation of the tangent line at $(a, f(a))$ is the line

$$
y-f(a)=f^{\prime}(a)(x-a)
$$

We compute that $f^{\prime}(x)=6 x^{2}-19$ by the power rule and thus $f^{\prime}(2)=24-19=5$. Therefore the equation of the tangent line is

$$
y-(-2)=5(x-2) \Longrightarrow y=5 x-12
$$

7. (5 points) Find all vertical and horizontal asymptotes of the graph of $f(x)=\frac{\sqrt{4 x^{2}-1}+x}{4 x-1}$.

Solution: We first compute the horizontal asymptotes. Recall that $\sqrt{x^{2}}=|x|$. Thus as x goes to positive ∞ we have that $\sqrt{x^{2}}=x$ and therefore

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}-1}+x}{4 x-1} & =\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}-1} / x+x / x}{4-1 / x}=\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}-1} / \sqrt{x^{2}}+x / x}{4-1 / x} \\
& =\frac{\lim _{x \rightarrow \infty} \sqrt{4+-1 / x^{2}}+1}{\lim _{x \rightarrow \infty} 4-1 / x}=\frac{\sqrt{4-0}+1}{4-0}=\frac{3}{4}
\end{aligned}
$$

Now as x goes to negative ∞, we have that $\sqrt{x^{2}}=|x|=-x$ as x is negative. Thus it follows that $x=-\sqrt{x^{2}}$ in this case and we find that

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-1}+x}{4 x-1} & =\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-1} / x+x / x}{4-1 / x}=\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-1} /-\sqrt{x^{2}}+x / x}{4-1 / x} \\
& =\frac{\lim _{x \rightarrow-\infty}-\sqrt{4+-1 / x^{2}}+1}{\lim _{x \rightarrow-\infty} 4-1 / x}=\frac{-\sqrt{4-0}+1}{4-0}=\frac{-1}{4}
\end{aligned}
$$

Be careful! Notice that only the term under the square root in the numerator changes sign. Thus the horizontal asympototes are at $y=\frac{3}{4}$ and at $y=\frac{-1}{4}$.

The vertical asympototes are where the denominator of $f(x)$ is zero. This happens exactly when $4 x-1=0 \Longrightarrow x=\frac{1}{4}$ is the vertical asymptote.

