Calculus I Practice Midterm 1 Solutions

Instructions

- Write your name and UNI clearly in the section below.
- You are NOT allowed to use class notes, books and homework solutions in the examination.
- Except for True/False questions, show all computations and work in your answer.
- Don't cheat! If it looks like you are cheating, then you are cheating.

Question	Points	Score
1	10	
2	10	
3	4	
4	6	
5	10	
6	5	
7	5	
Total:	50	

Name: \qquad

UNI: \qquad

1. (10 points) True/False 2 points each
(a) T $\mathrm{F} \quad f(x)=\sin \left(x^{2}\right)$ is an even function.
(b) T T The graph of $f(2 x)$ is obtained from stretching the graph of $f(x)$ horizontally by a factor of 2 .
(c) T F We have that

$$
\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=\lim _{x \rightarrow 0} x \cdot \lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)
$$

(d) T T The function $f(x)=x^{6}+x-1$ has a solution in $(0,1)$.
(e) T F The derivative of 1 is 1 .
(You may use this area as scratchwork.)

Solution:

(a) T. We compute that $f(-x)=\sin \left((-x)^{2}\right)=\sin \left(x^{2}\right)=f(x)$. Therefore $f(x)=$ $\sin (x)$ is even.
(b) F. The graph of $f(2 x)$ is obtained from shrinking the graph of $f(x)$ horizontally by a factor of 2 .
(c) F. Because

$$
\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right) \text { DOES NOT EXIST }
$$

we cannot use the Product limit law and thus the equation above is false.
(d) T. We compute that $f(0)=-1$ and $f(1)=1$. Because polynomials are continuous at all real numbers and in particular in the interval $[0,1]$ the Intermediate Value Theorem shows that $f(x)$ must equal 0 at some point in $(0,1)$ and therefore $f(x)$ has a solution in $(0,1)$.
(e) \mathbf{F} The derivative of 1 is zero, either by an explicit computation using the defintion of the derivative, or noting that $x^{0}=1$ and so by the power rule $(1)^{\prime}=\left(x^{0}\right)=$ $0 x^{-1}=0$.
2. Compute the following limits, if they exist. If the limit does not exist, explain why.
(a) (3 points) $\lim _{x \rightarrow 3} \frac{x-2}{x^{2}-5 x+6}$

Solution:

$$
\lim _{x \rightarrow 3} \frac{x-2}{x^{2}-5 x+6}=\lim _{x \rightarrow 3} \frac{x-2}{(x-2)(x-3)} \stackrel{x \neq 3}{=} \lim _{x \rightarrow 3} \frac{1}{(x-3)}
$$

Note $\frac{1}{(x-3)}$ goes to infinity at $x=3$ and thus the limit does not exist. To be more precise, we will show that the right and left handed limits are not the same.

$$
\lim _{x \rightarrow 3^{+}} \frac{1}{x-3}=R \lim _{x \rightarrow 3} \frac{1}{x-3}=\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{1}{(3+h)-3}=\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{1}{h}
$$

Because $h>0$, the quantity above is always positive. If we repeat the same calculation with the left handed limit however, we find

$$
\lim _{x \rightarrow 3^{-}} \frac{1}{x-3}=L \lim _{x \rightarrow 3} \frac{1}{x-3}=\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{1}{(3-h)-3}=\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{1}{-h}
$$

Because $h>0$, the quantity above is always negative. Since a positive number is never equal to a negative number we conclude that

$$
\lim _{x \rightarrow 3^{-}} \frac{1}{x-3} \neq \lim _{x \rightarrow 3^{+}} \frac{1}{x-3}
$$

and therefore the limit doesn't exist.
(b) (3 points) $\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{x}\right)$

Solution: Notice that $-1 \leq \sin \left(\frac{1}{x}\right) \leq 1$. Because $x^{4} \geq 0$ for any value of x, it follows that we have the inequality

$$
-x^{4} \leq \sin \left(\frac{1}{x}\right) \leq x^{4}
$$

Notice that $\lim _{x \rightarrow 0}-x^{4}=\lim _{x \rightarrow 0} x^{4}=0$ because polynomials are continuous so we can just plug in 0 to evaluate the limit. Therefore by the Squeeze Theorem it follows that

$$
\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{x}\right)=0
$$

(c) (4 points) $\lim _{x \rightarrow 0} \cos \left(\frac{\sqrt{2+x}-\sqrt{2-x}}{x}\right)$

Solution: Because $\cos (x)$ is continuous at all real numbers, we can bring the limit inside, e.g.

$$
\begin{equation*}
\lim _{x \rightarrow 0} \cos \left(\frac{\sqrt{2+x}-\sqrt{2-x}}{x}\right)=\cos \left(\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2-x}}{x}\right) \tag{1}
\end{equation*}
$$

We now compute the limit inside by rationalizing the numerator.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2-x}}{x} & =\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2-x}}{x} \cdot \frac{\sqrt{2+x}+\sqrt{2-x}}{\sqrt{2+x}+\sqrt{2-x}} \\
& =\lim _{x \rightarrow 0} \frac{(\sqrt{2+x})^{2}-(\sqrt{2-x})^{2}}{x(\sqrt{2+x}+\sqrt{2-x})}=\lim _{x \rightarrow 0} \frac{(2+x)-(2-x)}{x(\sqrt{2+x}+\sqrt{2-x})} \\
& =\lim _{x \rightarrow 0} \frac{2 x}{x(\sqrt{2+x}+\sqrt{2-x})} \stackrel{x \neq 0}{=} \lim _{x \rightarrow 0} \frac{2}{(\sqrt{2+x}+\sqrt{2-x})}
\end{aligned}
$$

Now notice that function in the final expression above is continuous at $x=0$ because the denominator is not 0 . Therefore by continuity we can plug in 0 to evaluate the limit and find that

$$
\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2-x}}{x}=\frac{2}{\sqrt{2}+\sqrt{2}}=\frac{2}{2 \sqrt{2}}=\frac{1}{\sqrt{2}}
$$

To obtain the final answer we plug this back into Equation (1) and find

$$
\lim _{x \rightarrow 0} \cos \left(\frac{\sqrt{2+x}-\sqrt{2-x}}{x}\right)=\cos \left(\frac{1}{\sqrt{2}}\right)
$$

3. Please give formal definitions below.
(a) (2 points) What does it mean for a function $f(x)$ to be continuous at a point a ?

Solution: $f(x)$ is continuous at a point a if the both conditions are satisfied

- $\lim _{x \rightarrow a} f(x)$ exists
- $\lim _{x \rightarrow a} f(x)=f(a)(f(x)$ has the Direct Substitution Property at a.)
(b) (2 points) What does it mean for a function $f(x)$ to be differentiable at a point a ?

Solution: $f(x)$ is differentiable at the point a if

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \text { exists }
$$

Specifically, the limit above exists if and only if the left-handed limit equals the right-handed limits. This means that $f(x)$ is differentiable at the point a if
$\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}=\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{f(a-h)-f(a)}{-h}=\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}$
4. Consider the following function.

$$
f(x)= \begin{cases}2 & \text { if } x \leq-1 \\ 10-x^{2} & \text { if }-1<x<3 \\ \frac{1}{4-x} & \text { if } x \geq 3\end{cases}
$$

(a) (3 points) For what values of x is f not continuous at x ?

2 and $10-x^{2}$ are both continuous in the regions prescribed above, so we check if $f(x)$ is continuous where they meet, aka at $x=-1$. We need to see if

$$
\lim _{x \rightarrow-1^{-}} 2 \xlongequal{?} \lim _{x \rightarrow-1^{+}} 10-x^{2}
$$

Because both functions are continuous at $x=-1$, to evaluate the one-sided limits is the same as evaluating the limit by plugging in -1 . Thus we see that $2 \neq 10-(-1)^{2}=10-1=9$ and so $f(x)$ is not continuous at -1 .

We repeat the same calculation for $x=3$. Again since $10-x^{2}$ and $\frac{1}{4-x}$ are continuous at $x=3$ we can just plug in 3 to evaluate the one-handed limits.

$$
1=10-3^{2}=\lim _{x \rightarrow 3^{-}} 10-x^{2}=\lim _{x \rightarrow 3^{+}} \frac{1}{4-x}=\frac{1}{4-3}=1
$$

Thus we see that $\lim _{x \rightarrow 3} f(x)$ exists. Moreover as $f(3)=1, f(x)$ satisfies the Direct Substitution Property at 1 and so $f(x)$ is continuous at $x=3$.

Finally in the region $x \geq 3, \frac{1}{4-x}$ is continuous except when $x=4$ where the function goes to infinity.
(b) (3 points) For what values of x is f not differentiable at x ?

Solution: $\underline{f(x) \text { is not continuous at } x=-1,3,4 \text {. } ~}$
Here one can use the result that if a function $f(x)$ is differentiable at a, then it must be continuous at a. Notice this means that if $f(x)$ is not continuous at a,
it is not differentiable at a. Thus right from the start we know that $f(x)$ is not differentiable at $x=-1$ and at $x=4$. Like before outside these values and at $x=3 f(x)$ is either a constant, a polynomial or a rational function and so is differentiable. It remains to check $x=3$. By definition we need to see if

$$
\lim _{\substack{h \rightarrow 0 \\ h>0}} \frac{f(3-h)-f(3)}{-h} \xlongequal[\substack{h \rightarrow 0 \\ h>0}]{ } \lim _{\substack{h\\}} \frac{f(3+h)-f(3)}{h}
$$

Recall that $f(3)=1$. Because $3-h<3$ for $h>0$, by definition, $f(x)=10-x^{2}$ so the left handed side above is then

$$
\begin{aligned}
\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{f(3-h)-f(3)}{-h} & =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{10-(3-h)^{2}-1}{-h}=\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{9-\left(9-6 h+h^{2}\right)}{-h} \\
& =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{6 h-h^{2}}{-h}=\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{h(6-h)}{-h}=\lim _{\substack{h \rightarrow 0 \\
h>0}}-(6-h) \xlongequal{\text { cont }}-6
\end{aligned}
$$

We repeat the same for the right hand side above where now $3+h>3$ for $h>0$ and so $f(x)=\frac{1}{4-x}$ and find

$$
\begin{aligned}
\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{f(3+h)-f(3)}{h} & =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{\frac{1}{4-(3+h)}-1}{h}=\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{\frac{1}{1-h}-1}{h} \\
& =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{\frac{1-(1-h)}{1-h}}{h}=\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{h}{h(1-h)} \xlongequal{h \neq 0} \lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{1}{1-h} \xlongequal{\text { cont }} 1
\end{aligned}
$$

Since the left and right handed limits don't agree we see that $f(x)$ is not differentiable at $x=3$.
5. Compute the value of the derivative of $f(x)$ at the point a. If $f(x)$ is not differentiable at a, explain why.
(a) (3 points) $f(x)=x^{3}+\sqrt{x}, a=4$

Solution: Write $f(x)=x^{3}+x^{\frac{1}{2}}$ and using the power rule we see that

$$
f^{\prime}(x)=3 x^{2}+\frac{1}{2} x^{\left(\frac{1}{2}-1\right)}=3 x^{2}+\frac{1}{2} x^{-\frac{1}{2}}=3 x^{2}+\frac{1}{2 \sqrt{x}}
$$

Plugging in $a=4$ we see that

$$
f^{\prime}(4)=3\left(4^{2}\right)+\frac{1}{2 \sqrt{4}}=48+\frac{1}{4}=48.25
$$

(b) (3 points) $f(x)=\frac{7}{x^{6}}, a=1$

Solution: Write $f(x)=7 x^{-6}$ and using the power rule we see that

$$
f^{\prime}(x)=7(-6) x^{(-6-1)}=-42 x^{-7}=\frac{-42}{x^{7}}
$$

Plugging in $a=1$ we see that

$$
f^{\prime}(1)=\frac{-42}{1^{7}}=-42
$$

(c) (4 points) $f(x)=2|x-3|, a=3$

Solution: We can't use the power rule here since $|x-3| \neq x-3$. Thus we need to use the definition of the derivative. In fact we claim that $f(x)$ is not differentiable at $a=3$. We compute the right and left-handed limits of

$$
\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}
$$

As $|-h|=h$ for $h>0$, we see that

$$
\begin{aligned}
\lim _{x \rightarrow 3^{-}} \frac{f(x)-f(3)}{x-3} & =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{f(3-h)-f(3)}{-h}=\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{2|(3-h)-3|-0}{-h} \\
& =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{2|-h|}{-h}=\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{2 h}{-h} \stackrel{h \neq 0}{=} \lim _{\substack{h \rightarrow 0 \\
h>0}}-2=-2
\end{aligned}
$$

As $|h|=h$ for $h>0$ we see that

$$
\begin{aligned}
\lim _{x \rightarrow 3^{+}} \frac{f(x)-f(3)}{x-3} & =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{f(3+h)-f(3)}{h}=\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{2|(3+h)-3|-0}{h} \\
& =\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{2|h|}{h}=\lim _{\substack{h \rightarrow 0 \\
h>0}} \frac{2 h}{h} \stackrel{h \neq 0}{=} \lim _{\substack{h \rightarrow 0 \\
h>0}} 2=2
\end{aligned}
$$

Since the left and right handed limits don't agree we see that $f(x)$ is not differentiable at $a=3$.
6. (5 points) Find an equation of the tangent line to the curve $y=3 x^{3}+2 x^{2}+1$ at the point $(-1,0)$.

Solution: By definition, the equation of the tangent line at $(a, f(a))$ is the line

$$
y-f(a)=f^{\prime}(a)(x-a)
$$

We compute that $f^{\prime}(x)=9 x^{2}+4 x$ by the power rule and thus $f^{\prime}(-1)=9-4=5$. Therefore the equation of the tangent line is

$$
y-0=5(x-(-1)) \Longrightarrow y=5 x+5
$$

7. (5 points) Find all vertical and horizontal asymptotes of the graph of $f(x)=\frac{\sqrt{9 x^{2}+3}}{4 x-1}$.

Solution: We first compute the horizontal asymptotes. Recall that $\sqrt{x^{2}}=|x|$. Thus as x goes to positive ∞ we have that $\sqrt{x^{2}}=x$ and therefore

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{2}+3}}{4 x-1}=\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{2}+3} / \sqrt{x^{2}}}{4-3 / x}=\frac{\lim _{x \rightarrow \infty} \sqrt{9+3 / x^{2}}}{\lim _{x \rightarrow \infty} 4-1 / x}=\frac{\sqrt{9+0}}{4-0}=\frac{3}{4}
$$

Now as x goes to negative ∞, we have that $\sqrt{x^{2}}=|x|=-x$ as x is negative. Thus it follows that $x=-\sqrt{x^{2}}$ in this case and we find that

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{2}+3}}{4 x-1}=\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{2}+3} /\left(-\sqrt{x^{2}}\right)}{4-1 / x}=\frac{\lim _{x \rightarrow-\infty}-\sqrt{9+3 / x^{2}}}{\lim _{x \rightarrow-\infty} 4-1 / x}=\frac{-\sqrt{9+0}}{4-0}=\frac{-3}{4}
$$

Thus the horizontal asympototes are at $y=\frac{3}{4}$ and at $y=\frac{-3}{4}$.
The vertical asympototes are where the denominator of $f(x)$ is zero. This happens exactly when $4 x-1=0 \Longrightarrow x=\frac{1}{4}$ is the vertical asymptote.

