O wthree S. 4 The Mobins Fundrin of a Poset poset: partially ordered set (P, <) where & is reflexive, antisymmetri & transiture & some elements are not comparable $\forall x, y \in P : x \leftarrow y, x = y, x > y$ or Mtex (IN, I) 2/3 and 3/2 ml 2/3 2 & 3 not comparable You muy know the special case of this function from number theory. theory. For any positive integer a define $\mu(n)$ as either -1, 0 ~ 1 depending on the factorisation of a vide prime factors. $\mu(n) = 1 \quad \text{if } n \quad \text{is a square-free positive integra with ex. 2.3.5} \\ even \quad no. \quad of \quad = 21. \\ \mu(n) = -1 \quad \text{ii} \quad \text{ii} \quad \text{with an orth no. } ex. 2.3.5 \\ q \quad prime factors \quad = 30 \\ q \quad prime factors$ K. 2.3.5.7 = 210 $\mu(n)=0$ if n has a signment prime factor $k: 2^{2}=4, 24=2^{3}\cdot 3$ What's pr[1]? = 1 because o prime factors. Now if we book at the more generalised deft of the Möbins function of a poset this is more proofed Let P be a bomby finite part with a O. The Miloius function of P is a map $\mu: P \rightarrow \mathbb{Z}$ defined m: P -> Z integen $(S.4)\mu(x) = S \qquad if x = 0 minimum$ L- Z µ (y) otherwise 4 L SC I is fourly finite so the no of sommands is

finite ro funt p is well-definek We an more terms to the LUS of the +0 get the equiv. defr. $f_{\partial_1 X} = \begin{cases} 0 & 1 \times 1 \end{cases}$ 6 Assume m(x) + ô Thin fr E Mly) Ţ Kronerker dette ycx $\sum \mu(y) = \mu(x) + \sum \mu(y) = 0 = \delta_{\theta, x}$ X ≠ O らくん yEsc $1 \neq x = 0 \quad \mu(x) =$ = 66,6 Will use this Inter $\sum \mu(y) = \delta_{0,x}$ $y \leq x$ (5-5)

Hasse dingrams Weong is a specific of more general monber example a definition 15 3-1 5-1 -12. -ank Ins enh J monte p P30 P12 04 6 4 0 DA 2 - | 2 - 1 C_3 3 O chain 2 0 Prop 5.4.1 Cn In have he $\frac{if}{if} = 0$ 2-1 р(i) -> Ahenir 50 = 1,-1, or 0 depending on M (Cr) hether N=0,1 \mathbf{n} n),2. of a set ordered by R3 Power set -1 S(, 2,) 3 101

 $(P(S), \underline{C})$ 5.3,57,3 \$33 Prop. 5.4.2 If SEBA then pu (5) = (-1) #5 So μ (Bn) = (-1)ⁿ Proof: show that (-1) + s satisfies (5.5) $\sum \mu(y) = \delta'_{\overline{0}, X}$ $\gamma \in \mathcal{K}$ Suppose TEBn and let #T=K then $\sum_{i=0}^{k} (-1)^{i} = \sum_{i=0}^{k} (-1)^{i} = \sum_{i=0}^{k} (k)^{i} (-1)^{i} = \delta_{0,k} = \delta_{0,k}$ $T = \gamma_1, \dots, k \gamma S \subseteq T = \# S = i$ any woset of T SC(T) AN of subsets of T with size i S can be thought of a fiking I and take i elements form it there (#T) with is K many such sots are $\binom{k}{i} \begin{pmatrix} -1 \end{pmatrix}^{i} = \sum_{i=1}^{k} \binom{k}{i} + \frac{k}{i} \begin{pmatrix} -1 \end{pmatrix}^{i} = \begin{pmatrix} 1 + (-1) \end{pmatrix}^{k} = O^{k}$

We can now compute the Möbius function of the divisor lattice. **Proposition 5.4.5.** The Möbius function of D_n is $\mu(d) = \begin{cases} (-1)^m \\ 0 \end{cases}$ if d is a product of m distinct primes, (5.7) otherwise. This is the number throng occumpte mentioned entir

...., N KĘn = 0 Ma. Sel minimal element **Theorem 5.4.3.** Let P be a locally finite poset with $\hat{0}$ and let $f: P \rightarrow Q$ be in isomorphism. Then for all $x \in P$ we have $\mu_P(x) = \mu_O(f(x)).$ mobins function ndoins funtin for P(x) Q J (\prec) , (S phrit innye H × post 2 Q 5.4.4 Int 1 **Theorem 5.4.4.** Let P and Q be locally finite posets containing $\hat{0}_P$ and $\hat{0}_O$, respectively. Then for all $s \in P$ and $x \in Q$ we have $\mu_{P \times Q}(s, x) = \mu_P(s)\mu_O(x).$ PXQ por Our third method to produce new posets from old ones is via products. Given two (not necessarily disjoint) posets (P, \leq_P) and (Q, \leq_O) , their (direct or Cartesian) product has underlying set $P \times Q = \{(x, y) \mid x \in P, y \in Q\}$ together with the partial order $(x, y) \leq_{P \times Q} (x', y')$ if $x \leq_P x'$ and $y \leq_Q y'$.

Proof. It suffices to show that the right-hand side of the displayed equation satisfies (5.5). But given $(s, x) \in P \times Q$, we have $\sum_{\substack{(t,y) \le (s,x) \\ (t,y) \le (s,x)}} \mu_P(t) \mu_Q(y) = \sum_{t \le s} \mu_P(t) \sum_{y \le x} \mu_Q(y) = \delta_{\hat{0}_P,s} \delta_{\hat{0}_Q,x} = \delta_{(\hat{0}_P,\hat{0}_Q),(s,x)}$ $\partial = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)$ Kronecke lette in Loth from as desired. Choose some pair (S,X) in PXQ Think of all pairs (t,y) less them on equal to (S,x) the for any yit (t, y) ((s,x) , then for any t < s Ą Y EX (6,5) as o $\left(\left(\cdot, \star \right) \right)$ only my getting a one it ordered paris are equal iff. bath contributes are Square We can now compute the Möbius function of the divisor lattice. **Proposition 5.4.5.** The Möbius function of D_n is Theory & $\mu(d) = \begin{cases} (-1)^m & \text{if } d \text{ is a product of } m \text{ distinct primes,} \\ 0 & \text{otherwise.} \end{cases}$ (5.7) Not square free $N = p_1 p_2 \dots p_k$ Pi F pj divisibility is the notiviting cample

Moliw Inversion Theorem 12 20 4 4 10	$\begin{bmatrix} 2, 2 & 3 \end{bmatrix} = \begin{cases} 2, 2 & 3 \end{bmatrix} = \begin{cases} 2, 4, 10, 2 \\ 4 \\ 15 \\ 0 \\ 0 \\ 0 \\ 15 \end{bmatrix}$
4 2 4 2 4 2 4 2 4 2 4 4 2 4 4 4 4 4 4 4 4 4 4	5^{15} $0_{[2,20]}$ 5^{2} $y_{[2,5]} = \phi$
$[x, y] = \{z \in I \mid x \leq z \leq y\}.$	

2 20 2,4 y = 20 2 رە 2 + 0 4 L < \sim Mro Nh

5.5. The Möbius Inversion Theorem

In this section we will prove the Möbius Inversion Theorem, which is a very general method for inverting sums over posets *P*. In fact, we will show that special cases of this result include the Fundamental Theorem of the Difference Calculus ($P = C_n$), the Principle of Inclusion and Exclusion ($P = B_n$), and the Möbius Inversion Theorem in number theory ($P = D_n$). A useful perspective will be to consider a certain algebra associated with *P* called the incidence algebra and which permits linear algebra techniques to be employed.

Our first step will be to generalize the Möbius function to a map having two arguments. Let *P* be a locally finite poset and let Int(P) be the set of closed intervals of *P*. Note that every $[x, z] \in Int(P)$ has a minimum element; namely $\hat{0}_{[x,y]} = x$. The *Möbius function* of *P* is the map μ : $Int(P) \rightarrow \mathbb{Z}$ defined inductively on [x, z] by

5.12 why cally 1,t (P) that have the same minimal element. 5.13 analypus to in 5.5 what hnd hr $\sum_{y < x} \mu(y) = \delta_{\hat{0}, x}$ (5.5) $\mu(x,z)=\mu_{[x,z]}(z)$ $\sum_{x \le y \le z} \mu(x, y) = \delta_{x, z}.$ (5.13)V = 1((**Theorem 5.5.5** (Möbius Inversion Theorem). Let P be a finite poset, let V be a real vector space, and let $f, g: P \rightarrow V$ be two functions. (a) We have $f(x) = \sum_{y \ge x} g(y) \text{ for all } x \in P \iff g(x) = \sum_{y \ge x} \mu(x, y) f(y) \text{ for all } x \in P.$ (b) We have $f(x) = \sum_{y \le x} g(y) \text{ for all } x \in P \iff g(x) = \sum_{y \le x} \mu(y, x) f(y) \text{ for all } x \in P.$

Proof. We will prove (a), leaving (b) as an exercise. In fact, we will give two proofs of (a), one working directly with the elements of $\mathcal{I}(P)$ and one using linear algebra.

Let us assume that $f(x) = \sum_{y \ge x} g(y)$ for all $x \in P$. Plugging this into summation involving μ and using (5.13) yields

$$\sum_{y \ge x} \mu(x, y) f(y) = \sum_{y \ge x} \mu(x, y) \sum_{z \ge y} g(z)$$
$$= \sum_{z \ge x} g(z) \sum_{x \le y \le z} \mu(x, y)$$
$$= \sum_{z \ge x} g(z) \delta_{x, z}$$

= g(x).

ne have function g & make f using this formula

Extend this to vertices mulni hng

Our first application will be to the theory of finite differences, which is a discrete analogue of the calculus. A function $f : \mathbb{N} \to \mathbb{R}$ has as (*forward*) *difference* the function $\Delta f : \mathbb{N} \to \mathbb{R}$ defined by

$$\Delta f(n) = f(n+1) - f(n).$$

This corresponds to differentiation. Indeed, the derivative of $f : \mathbb{R} \to \mathbb{R}$ is

$$f'(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

and at $\epsilon = 1$ the function inside the limit is just f(x + 1) - f(x). For example, if $f(n) = n^2$, then $\Delta f(n) = (n + 1)^2 - n^2 = 2n + 1$ which bears a strong resemblance to $(x^2)' = 2x$. There is also a version of the definite integral in this context. The *definite summation* of $f : \mathbb{N} \to \mathbb{R}$ is the function $Sf : \mathbb{N} \to \mathbb{R}$ where

$$Sf(n) = \sum_{i=0}^{n} f(i)$$

The analogue of the Fundamental Theorem of Calculus is as follows. It will be convenient to extend the domain of any $f : \mathbb{N} \to \mathbb{R}$ to \mathbb{Z} by letting f(i) = 0 for i < 0.

Theorem 5.5.6 (Fundamental Theorem of Difference Calculus). *Given two function* $f, g : \mathbb{N} \to \mathbb{R}$, we have

$$f(n) = Sg(n)$$
 for all $n \ge 0 \iff g(n) = \Delta f(n-1)$ for all $n \ge 0$.

Proof. It is easy to compute that in the chain C_n we have

$$\mu(i, n) = \begin{cases} 1 & \text{if } i = n, \\ -1 & \text{if } i = n - 1, \\ 0 & \text{otherwise.} \end{cases}$$

Now for all $n \ge 0$, the first condition in the theorem can be translated as

$$f(n) = Sg(n) = \sum_{i=0}^{n} g(i) = \sum_{i \le n} g(i)$$

where the inequality indexing the last summation is taking place in C_n . Using Theorem 5.5.5(b) and the Möbius values in C_n above, this is equivalent to

$$g(n) = \sum_{i \le n} \mu(i, n) f(i) = (1) f(n) + (-1) f(n-1) = \Delta f(n-1)$$

- 0

N

• N~(

for all $n \ge 0$.

p n,n,

It turns out that the Principle of Inclusion and Exclusion is just the Möbius Inversion Theorem applied to the poset B_n . We restate it here for ease of reference.

 $\mu(n-1,n) = -\mu(n-1,n-1) = -1$

µ (n-2, n) = - | µ(n-2, n-1) + µ (n-2, n-2)

+

por uning the proton's invenion formuli Theren S.S.7 Thorran S.S.g **Theorem 5.5.8.** *Given two functions* $f, g: \mathbb{P} \to \mathbb{R}$ *, we have* $f(n) = \sum_{d \mid n} g(d) \text{ for all } n \in \mathbb{P} \iff g(n) = \sum_{d \mid n} \mu(d) f(n/d) \text{ for all } n \in \mathbb{P}.$ fintion kefortim