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Theorem 5.4.3. Let P be a locally finite poset with 0 and let f : P — Q be in isomor-
phism. Then for all x € P we have

pp(x) = pQ(f()).
s VW bewrsg o morp i mpuns %vuj hanse
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Theorem 5.4.4. Let P and Q be locally finite posets containing Op and O, respectively.
Then forall s € P and x € Q we have

Hpy(8, X) = pp(So(X).

Proof. It suffices to show that the right-hand side of the displayed equation satis-
fies (5.5). But given (s, x) € P X Q, we have

(£, y)=(s,x) t<s y<x

as desired. Q OUJ(Y %m%/ o{;/f?{;w
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We can now compute the Mobius function of the divisor lattice.

Proposition 5.4.5. The Mobius function of D,, is

(=)™ ifd is a product of m distinct primes,

(5.7) pu(d) = { 0 otherwise.
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Proposition 5.4.2. If S € B, then
(5.6) u(S) = (-1)"s.
So u(By) = (="

Proof. Itwill suffice to show that the function (—1)"® satisfies (5.3)) since that equation
uniquely defines u. So suppose T € B, and let #T = k. Then, using Theorem [1.3.3(d),

TS =Y Y 1y = z( )<—1>f=ao,k=aﬂ,r

SCcT i=0 Se( ) =0

which is the desired equality. O
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Theorem 5.4.3. Let P be a locally finite poset with 0 and let f: P — Q begn isomor-
phism. Then for all x € P we have _

up(x) = po(f(x)).
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Theorem 5.4.4. Let P and Q be locally finite posets containing Op and O, respectively.
Then forall s € P and x € Q we have

;,tpr(s, X) = #p(S)#Q(x)-

\

P

2

Our third method to produce new posets from old ones is via products. Given two
(not necessarily disjoint) posets (P, <p) and (Q, <), their (direct or Cartesian) product
has underlying set
PxQ={(xy)|xePyeQ}
together with the partial order

(x,) <pxo (X', y")if x <p x"and y <g )",



Proof. It suffices to show that the right-hand side of the displayed equation satis-

fies (5.5). But given (s, x) € P X Q, we have /___% A A "
Y, kpOu() = D up() D) () = 86,.5800.x = 8(0.00).(5%) O ~[ 0O, ©
(t,y)<(s,x) t<s y<x /) X é\k f Vi
as desired.

QK’\»V\{LK‘V W o~ LA ?LNO{%A

A% 1 LV <f/><) - X
(»\/f/t }Mwm &lj) ot Ao o
9/s<)

Ri
‘%éf [W %’V s y\@( (’li/j)\< (f/7<)
% Yy (A Ve o P < @/j)ﬁ@/’i

o , . . S g vt zly%
We can now compute the Mobius function of the divisor lattice.

Proposition 5.4.5. The Mobius function of D,, is V\AM/M,R/
(5.7) (d) = (—=1)™ ifd is a product of m distinct primes, M
. HAI=19 otherwise. x v As—
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~ Then the corresponding closed interval is
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5.5. The Mobius Inversion Theorem

In this section we will prove the Mobius Inversion Theorem, which is a very general
method for inverting sums over posets P. In fact, we will show that special cases of
this result include the Fundamental Theorem of the Difference Calculus (P = Cp,),
the Principle of Inclusion and Exclusion (P = B,), and the M&bius Inversion Theorem
in number theory (P = D,). A useful perspective will be to consider a certain alge-
bra associated with P called the incidence algebra and which permits linear algebra
techniques to be employed.

Our first step will be to generalize the Mdbius function to a map having two ar-
guments. Let P be a locally finite poset and let Int(P) be the set of closed intervals of
P. Note that every [x, z] € Int(P) has a minimum element; namely (‘)[w = x. The
Mobius function of P is the map u : Int(P) — Z defined inductively on [x, z| by
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(5.5) D, 1) =8,

yex

u(x,z) = Uiy 21(2)

(5.13) Z H(x,y) =08y 5.
x<y<z
Theorem 5.5.5 (Mobius Inversion Theorem). Let P be a finite poset, let V be a real V - IK ‘ M

vector space, and let f,g: P — V be two functions.
O (@) We have ww

f(x)= E g(y)forallx e P < g(x)= z u(x,y)f(y) forall x € P.

yzx yzx
(b) We have
f)=) gy forallx € P <> g(x) =Y u(y,x)f(y)forall x € P.

}'SX ysx



Proof. We will prove (a), leaving (b) as an exercise. In fact, we will give two proofs of
(a), one working directly with the elements of 7(P) and one using linear algebra.

Let us assume that f(x) = Z},Zx g(y) for all x € P. Plugging this into summation
involving u and using (5.13)) yields

D M) = D) ux,y) Y 82)

yzx yzx zzy
=> 8@ D, ux.y)
zzx x<y<z
= Z g(z)ax,z
zZ>X
= g(x).
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Our first application will be to the theory of finite differences, which is a discrete
analogue of the calculus. A function f: N — R has as (forward) difference the func-
tion Af : N — R defined by

Af(n) = f(n+1) = f(n).
This corresponds to differentiation. Indeed, the derivativeof f: R — R is

f(x+¢€)— f(x)
€

f'(x) = lim

£—0

and at € = 1 the function inside the limit is just f(x + 1) — f(x). For example, if
f(n) = n?, then Af(n) = (n + 1)> — n* = 2n + 1 which bears a strong resemblance to

(x*)" = 2x. There is also a version of the definite integral in this context. The definite
summation of f: N — R is the function Sf : & — K where

Sf(n) = ) f(D).
1=0

The analogue of the Fundamental Theorem of Calculus is as follows. It will be con-
venient to extend the domain of any f: N — R to £ by letting f(i) = O fori < 0.

Theorem 5.5.6 (Fundamental Theorem of Difference Calculus). Given two function
f.g: N — R, we have

f(n) = Sg(n) foralln >0 < gh)=Af(n—-1)foralln > 0.

Proof. It iseasy to compute that in the chain C,, we have
1 ifi = n,
uiyn) =4-1 ifi=n-1,
0  otherwise.

Now for all n > 0, the first condition in the theorem can be translated as

f(n) = Sg(n) = ) g() = ) &)
i=0

isn
where the inequality indexing the last summation is taking place in C,,. Using Theo-
rem [5.5.3(b) and the Mébius values in C,, above, this is equivalent to

g(n) = 3 u(i, ) f() = ()f () + (-1 f(n—1) = Af(n— 1)

i<n

foralln > 0. O

It turns out that the Principle of Inclusion and Exclusion is just the Mobius Inver-
sion Theorem applied to the poset B,,. We restate it here for ease of reference.
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Theorem 5.5.8. Given two functions f,g: P — R, we have

f(n)=>g(d)foralln € P <> g(n) =) u(d)f(n/d)foralln € P.
d|n dln
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