Onthni
5. 4 The Mooing Fundurin of a Poet
poses : partithy ordered set (p, \leqslant)
where S is reflexive, antisymutari \& transitive \& some cements are not comparer
$\forall x, y \in P: x<y, x=y, x>y$ or not
ex $(\mathbb{N}, 1) \quad 2 \times 3$ and $3 x_{2}$ and $2 \neq 3$
2 \& 3 not comparable
You may know the special a are of this function from number theory.
For any y paitive integer n define $\mu(n)$ as either $-1,0 \sim 1$ depending on the frutorisation if n vito prime futons.
$\mu(n)=1$ if n is a square - free positive integer nth oven no. $x .2 \cdot 3 \cdot 5 \cdot 7$
even no of
$\mu(n)=-1$
$\begin{aligned} \text { of prime fat em no } & \text { ex. } 2 \cdot 3 \cdot 5 \\ & =30\end{aligned}$
$\mu(n)=0$ if n his a squared prove factor
whats $\mu(1)$? $=1$ because 0 prime futon.
Now if we look it the more genembish def n of the
mob ins function of a posset this is more powaful
Lat P be a loinhy finite pact witt a \hat{O}. The
Marius function of P is a map $\mu: P \rightarrow \mathbb{Z}$ defined inductively by
$\mu: P \rightarrow \mathbb{Z}$ intayen

$$
(5.4) \mu(x)=\left\{\begin{array}{l}
1 \quad \text { if } x=\hat{0} \quad \text { minimum } \\
-\sum_{\zeta<x} \mu(y) \text { othemie }
\end{array}\right.
$$

P is lountly finite so the no. of scummanis is
finite so thant μ is well-defined.
We can move terms to the [HS of the en to get the equiv. defer.
Assume $\mu(x) \neq \hat{0}$

$$
\begin{aligned}
& \text { Then }(x)=-\sum_{y<x} \mu(y) \\
& \sum_{y<s c} \mu(y)=\mu(x)+\sum_{y<x} \mu(y)=0=\delta_{\hat{0}, x}, x \neq \hat{0} \\
& \text { If } x=\hat{0} \quad \mu(x)=1=\delta_{\hat{0}, \hat{0}}
\end{aligned}
$$

Wien use this inter $\sum_{y \leqslant x} \mu(y)=\delta_{\hat{0, x}}(5-5)$

Hase dingrams

number troong is a speifio exmmple of more geneml definitiońr

class for μ of each mamber

C_{3}
chain $\left\{\begin{array}{cc}3 & 0 \\ 2 & 0 \\ 1 & -1 \\ 0 & 1\end{array}\right.$
Prop 5.4.1 In C_{n} we have

$$
\mu(i)=\left\{\begin{aligned}
1 & \text { if } i=0 \\
-1 & \text { if } i=1 \\
0 & \text { othermix }
\end{aligned}\right.
$$

So $\mu\left(C_{n}\right)=1,-1$, or 0 depensinin on chether $\begin{array}{r}n=0, \\ n \geqslant 2 .\end{array}$
B_{3} Power set of a set orlaned by contionment

Prop .5.4.2 If $S \in B_{n}$ then

$$
\mu(s)=(-1)^{4 s}
$$

So $\mu\left(B_{n}\right)=(-1)^{n}$
Proof: show that $(-1)^{\# S}$ satrifies (S.S)

$$
\sum_{y \leqslant x} \mu(y)=\delta_{\hat{0}, x}
$$

Suppose $T \in B_{n}$ and let \# $T=k$ then

$$
\begin{aligned}
& \sum_{S C T}(-1)^{\# S}=\sum_{i=0}^{k} \sum_{S \in\binom{T}{i}}(-1)^{i}=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i}=d_{0, k}=\delta_{\phi, T} \\
& T=\{1, \ldots . k\} \quad \# S=i
\end{aligned}
$$

$S \in\binom{T}{i}$ An of subsets of T with size $;$
S con be thought of bo finking T and take i elements form it there are $\binom{\# T}{i}$ wish is K many such sets

$$
\sum_{i}^{k}\binom{k}{i}(-1)^{i}=\sum_{i-\infty}^{k}\binom{k}{i} 1^{k-i}(-1)^{i}=(1+(-1))^{k}=0 k
$$

Unless $T=\varnothing$ then we can see equal to 0
If $T \phi \mu(\varnothing)=(-1)^{0}-1=\delta_{\phi, \phi}$
Theorem 5.4.3

Theorem 5.4.3. Let P be a locally finite poses with $\hat{0}$ and let $f: P \rightarrow Q$ be in isomorphism. Then for all $x \in P$ we have

$$
\mu_{P}(x)=\mu_{Q}(f(x)) .
$$

Thaw pogets being isomorphic means they have the same Haste hayrom \& so the Mobiun function will be the sarre.

Theorem 5.4.4. Let P and Q be locally finite posts containing $\hat{0}_{P}$ and $\hat{0}_{Q}$, respectively.
Then for all $s \in P$ and $x \in Q$ we have

$$
\mu_{P \times Q}(s, x)=\mu_{P}(s) \mu_{Q}(x)
$$

Proof. It suffices to show that the right-hand side of the displayed equation satisfirs (5.5). But given $(s, x) \in P \times Q$, we have

$$
\sum_{(t, y) \leq(s, x)} \mu_{P}(t) \mu_{Q}(y)=\sum_{t \leq s} \mu_{P}(t) \sum_{y \leq x} \mu_{Q}(y)=\delta_{\hat{0}_{P}, s} \delta_{\hat{0}_{Q}, x}=\delta_{\left(\hat{o}_{P}, \hat{0}_{Q}\right),(s, x)}
$$

as desired.
\mathbb{A} def. Kronever defter
If $t \leq s$, then for any $y \leq x \quad(t, y) \leqslant(s, x)$
as. if $y \leqslant x$, then for any $t \leqslant s(t, s) \leqslant(s, x)$,
orleverl paris are equal if both coors are equal

$$
\left.\delta_{a, b} \cdot \delta_{c, d}=\delta_{(a, c}^{c}\right)(b, b)
$$

get zero wales $a=b$ and $c=d$
then $(a, c)=(b, d)$

We can now compute the Möbius function of the divisor lattice.
Proposition 5.4.5. The Möbius function of D_{n} is
(5.7) $\mu(d)= \begin{cases}(-1)^{m} & \text { if d is a product of } m \text { distinct primes, } \\ 0 & \text { otherwise. }\end{cases}$

This is the number theory oxnmple mentioned
erswer
 where < is reflexive, antisymmetric \& trunsitwe and some elements are not compamble.
$\forall x, y \in P: x<y, x=y, x>y$ or more y thais
ex $(\mathbb{Z}, 1) \quad 2 \neq 3$ and $3 \neq 2$ and $2 \neq 3$ 2 and 3 are not comporntle
Fable dimpinus peI 14
Proposition 5.4.2. If $S \in B_{n}$, then
(5.6)

$$
\mu(S)=(-1)^{\# S}
$$

So $\mu\left(B_{n}\right)=(-1)^{n}$.
Proof. It will suffice to show that the function $(-1)^{\# S}$ satisfies (5.5) since that equation uniquely defines μ. So suppose $T \in B_{n}$ and let $\# T=k$. Then, using Theorem 1.3.3(d),

$$
\sum_{S \subseteq T}(-1)^{\# S}=\sum_{i=0}^{k} \sum_{S \in\binom{T}{i}}(-1)^{i}=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i}=\delta_{0, k}=\delta_{\emptyset, T}
$$

which is the desired equality. ¿ aM subsets w.

If $\# T=K$ and $0 \leqslant j \leqslant K$, then no. subsets of site j is $\binom{k}{j}$ number of ways to uniquely take j elements from k and form a subset.
$\left(T_{j}\right)=$ subsets of T with size j
(chorniy j elements form T)
Let $\left(B_{n}, \subseteq\right)$ be the poses of $P(\{1, \ldots n\})$ with subset containment as our in equality

$$
\sum_{j=0}^{k}\binom{k}{j}(-1)^{j}
$$

see mints.

Theorem 5.4.3. Let P be a locally finite pose with $\hat{0}$ and let $f: P \rightarrow Q$ beat isomorphism. Then for all $x \in P$ we have

$$
\mu_{P}(x)=\mu_{Q}(f(x))
$$

moline function $=$ morns funtini

$$
\text { for } p(x)
$$

tho prot etc.

$5 \cdot 4 \cdot 4$
Theorem 5.4.4. Let P and Q be locally finite posts containing $\hat{0}_{P}$ and $\hat{0}_{Q}$, respectively. Then for all $s \in P$ and $x \in Q$ we have

$$
\mu_{P \times Q}(s, x)=\mu_{P}(s) \mu_{Q}(x)
$$

Our third method to produce new posets from old ones is via products. Given two (not necessarily disjoint) posets $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$, their (direct or Cartesian) product has underlying set

$$
P \times Q=\{(x, y) \mid x \in P, y \in Q\}
$$

together with the partial order

$$
(x, y) \leq_{P \times Q}\left(x^{\prime}, y^{\prime}\right) \text { if } x \leq_{P} x^{\prime} \text { and } y \leq_{Q} y^{\prime} .
$$

Proof. It suffices to show that the right-hand side of the displayed equation satisfirs (5.5). But given $(s, x) \in P \times Q$, we have

$$
\begin{aligned}
& \text {.5). But given }(s, x) \in P \times Q \text {, we have } \\
& \sum_{(t, y) \leq(s, x)} \mu_{P}(t) \mu_{Q}(y)=\sum_{t \leq s} \mu_{P}(t) \sum_{y \leq x} \mu_{Q}(y)=\delta_{\hat{0}_{P}, s} \delta_{\hat{o}_{Q}, x}=\delta_{\left(\hat{o}_{P}, \hat{0}_{Q}\right),(s, x)}
\end{aligned}
$$

as desired.

choose some pair $(5, x)$ in $P \times Q$
Think of all pain (t, y) less then on equal to (s, x)
If $t \leq s$, then for any $y \leq x \quad(t, y) \leq(s, x)$ ab. if $y \leqslant x$, then for any $t \leqslant s(t, s)(\leqslant, x)$ only way getting a one if onlued pis we equal iff. Both conlinites are equal

We can now compute the Möbius function of the divisor lattice. Proposition 5.4.5. The Möbius function of D_{n} is (5.7) \qquad
 nor squab free

$$
n=p_{1}^{q_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}, \quad p_{i} \neq p_{j}
$$

divisibility is the motionting example for the wallis functions.

Movies Inversion Theorem

Then the corresponding closed interval is

$$
y \cdot[2,5]=\phi
$$

$$
\begin{aligned}
& {[2,20] } \\
&=\{2,4,10,2\} \\
&\{ \hat{O}_{[2,20]}
\end{aligned}
$$

$\mu(2,20)=-\sum \mu(2, y)$

$$
\begin{aligned}
& \frac{2 \mid y}{y \mid 20} y \neq 20 \\
= & {[\mu(2,4)+\mu(2,10)+\mu(2,2)] } \\
= & -[-1+1] \\
= & 1
\end{aligned}
$$

5.5. The Möbius Inversion Theorem

In this section we will prove the Möbius Inversion Theorem, which is a very general method for inverting sums over posets P. In fact, we will show that special cases of this result include the Fundamental Theorem of the Difference Calculus ($P=C_{n}$), the Principle of Inclusion and Exclusion ($P=B_{n}$), and the Möbius Inversion Theorem in number theory $\left(P=D_{n}\right)$. A useful perspective will be to consider a certain algebra associated with P called the incidence algebra and which permits linear algebra techniques to be employed.

Our first step will be to generalize the Möbius function to a map having two arguments. Let P be a locally finite poset and let $\operatorname{Int}(P)$ be the set of closed intervals of P. Note that every $[x, z] \in \operatorname{Int}(P)$ has a minimum element; namely $\hat{0}_{[x, y]}=x$. The Möbius function of P is the map $\mu: \operatorname{Int}(P) \rightarrow \mathbb{Z}$ defined inductively on $[x, z]$ by

$$
\begin{aligned}
& \text { 5. } 12 \text { using only. Int (} p \text {) that hare } \\
& \text { the some murimil element. }
\end{aligned}
$$

(5.5)

$$
\sum_{y \leq x} \mu(y)=\delta_{\hat{0}, x}
$$

\qquad

$$
\mu(x, z)=\mu_{[x, z]}(z)
$$

$$
\begin{equation*}
\sum_{x \leq y \leq z} \mu(x, y)=\delta_{x, z} \tag{5.13}
\end{equation*}
$$

Theorem 5.5.5 (Möbius Inversion Theorem). Let P be a finite posit, let V be a real vector space, and let $f, g: P \rightarrow V$ be two functions.
(a) We have

$$
f(x)=\sum_{y \geq x} g(y) \text { for all } x \in P \Longleftrightarrow g(x)=\sum_{y \geq x} \mu(x, y) f(y) \text { for all } x \in P
$$

(b) We have

$$
f(x)=\sum_{y \leq x} g(y) \text { for all } x \in P \Longleftrightarrow g(x)=\sum_{y \leq x} \mu(y, x) f(y) \text { for all } x \in P .
$$

Proof. We will prove (a), leaving (b) as an exercise. In fact, we will give two proofs of (a), one working directly with the elements of $\mathcal{J}(P)$ and one using linear algebra.

Let us assume that $f(x)=\sum_{y \geq x} g(y)$ for all $x \in P$. Plugging this into summation involving μ and using (5.13) yields

$$
\begin{aligned}
\sum_{y \geq x} \mu(x, y) f(y) & =\sum_{y \geq x} \mu(x, y) \sum_{z \geq y} g(z) \\
& =\sum_{z \geq x} g(z) \sum_{x \leq y \leq z} \mu(x, y) \\
& =\sum_{z \geq x} g(z) \delta_{x, z} \\
& =g(x) .
\end{aligned}
$$

we have function g \&c make of using this formula

Extend this to vectors by wing a mains

Our first application will be to the theory of finite differences, which is a discrete analogue of the calculus. A function $f: \mathbb{N} \rightarrow \mathbb{R}$ has as (forward) difference the funcion $\Delta f: \mathbb{N} \rightarrow \mathbb{R}$ defined by

$$
\Delta f(n)=f(n+1)-f(n)
$$

This corresponds to differentiation. Indeed, the derivative of $f: \mathbb{R} \rightarrow \mathbb{R}$ is

$$
f^{\prime}(x)=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon)-f(x)}{\epsilon}
$$

and at $\epsilon=1$ the function inside the limit is just $f(x+1)-f(x)$. For example, if $f(n)=n^{2}$, then $\Delta f(n)=(n+1)^{2}-n^{2}=2 n+1$ which bears a strong resemblance to $\left(x^{2}\right)^{\prime}=2 x$. There is also a version of the definite integral in this context. The definite summation of $f: \mathbb{N} \rightarrow \mathbb{R}$ is the function $S f: \mathbb{N} \rightarrow \mathbb{R}$ where

$$
S f(n)=\sum_{i=0}^{n} f(i)
$$

The analogue of the Fundamental Theorem of Calculus is as follows. It will be convenient to extend the domain of any $f: \mathbb{N} \rightarrow \mathbb{R}$ to \mathbb{Z} by letting $f(i)=0$ for $i<0$.

Theorem 5.5.6 (Fundamental Theorem of Difference Calculus). Given two function $f, g: \mathbb{N} \rightarrow \mathbb{R}$, we have

$$
f(n)=S g(n) \text { for all } n \geq 0 \Longleftrightarrow g(n)=\Delta f(n-1) \text { for all } n \geq 0
$$

Proof. It is easy to compute that in the chain C_{n} we have

$$
\mu(i, n)= \begin{cases}1 & \text { if } i=n \\ -1 & \text { if } i=n-1 \\ 0 & \text { otherwise }\end{cases}
$$

Now for all $n \geq 0$, the first condition in the theorem can be translated as

$$
f(n)=S g(n)=\sum_{i=0}^{n} g(i)=\sum_{i \leq n} g(i)
$$

where the inequality indexing the last summation is taking place in C_{n}. Using Theorem 5.5.5(b) and the Möbius values in C_{n} above, this is equivalent to

$$
g(n)=\sum_{i \leq n} \mu(i, n) f(i)=(1) f(n)+(-1) f(n-1)=\Delta f(n-1)
$$

for all $n \geq 0$.
It turns out that the Principle of Inclusion and Exclusion is just the Möbius Inversion Theorem applied to the poset B_{n}. We restate it here for ease of reference.

$$
\begin{gathered}
\mu(n-1, n)=-\mu(n-1, n-1)=-1 \\
\mu(n-2, n)=-[\mu(n-2, n-1)+\mu(n-2, n-2)
\end{gathered}
$$

$$
=-[-1+1]=0
$$

Theren S.5.7 \square prove uning the mibnis invenion forminh
Therrm 5.5.8

Theorem 5.5.8. Given two functions $f, g: \mathbb{P} \rightarrow \mathbb{R}$, we have

$$
f(n)=\sum_{d \mid n} g(d) \text { for all } n \in \mathbb{P} \Longleftrightarrow g(n)=\sum_{d \mid n} \mu(d) f(n / d) \text { for all } n \in \mathbb{P} .
$$

whe nubber therry function from before.

