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An Overview on Generating Functions

Dawson Franz 1

Abstract: In this lecture we will discuss generating functions, which are used to represent and analyze
the solution to an enumeration problem, often in a simpler form than the sequence that defines the
problem. These functions are a powerful "bookkeeping tooländ we will show how they can be used to
solve generalized recurrence relations and to find a generic term of a recurring sequence with k terms.
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1 Terminology Review

This lecture will mainly focus on how to solve and succinctly represent the answer to
enumeration problems using something called a generating function. But first, what exactly
is an enumeration problem? It is figuring out how many objects of size n fit a specific
definition. Some examples of enumeration problems include the following:

1. How many permutations are there of the set {1, 2, ..., 𝑛}?
a. There are n! permutations

2. How many binary sequences, or strings, are there of length n?
a. There are 2n unique strings (0...00, 0...11, ..., 1...11 where each is length 𝑛).

Before starting this lecture, here’s a few notations and definitions that are helpful to remember
as we see more examples:

• The binomial theorem (which expands something raised to a finite power) states:

(𝑥 + 𝑦)𝑛 =

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝑥𝑛−𝑘𝑦𝑘

• A class A is a collection of sets {A𝑛} indexed by natural numbers 𝑛 𝜖 N. For example,
if A is a class of permutations, A𝑛 is the class of permutations of size 𝑛.

• an, which is the number of objects of size n, represents a sequence of numbers.
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2 Defining Generating Functions

A generating function is another way to represent a sequence of numbers or a "bookkeeping
tool."This form is often simpler than the sequence itself.

Def. 1: Let (𝑎𝑛)𝑛≥0. This sequence’s generating function is the following series:

𝐴(𝑥) =
∑︁
𝑛≥0

𝑎𝑛𝑥
𝑛 = 𝑎0𝑥

0 + 𝑎1𝑥
1 + ... + 𝑎𝑛𝑥

𝑛

This also defines the generating function of an enumerable class A with 𝑎𝑛 objects of size 𝑛
in the class.

2.1 Example: Binomial Theorem

Let 𝑎𝑛 =
(𝑘
𝑛

)
for 𝑛 ≤ 𝑘 and 𝑎𝑛 = 0 for 𝑛 > 𝑘.

Through the binomial theorem, the sum for A(x) can be represented as

𝐴(𝑥) =
∑︁
𝑛≥0

𝑎𝑛𝑥
𝑛 =

∑︁
𝑛≥0

(
𝑘

𝑛

)
𝑥𝑛 = (1 + 𝑥)𝑘

So the generating function of 𝐴(𝑥) is (1+ 𝑥)𝑘 , where each element is a subset of {1, 2, ..., 𝑘}
with the size n equal to the number of elements.

2.2 Example 2: Coin Tossing

A two-sided coin, with probability 𝑝 ≥ 0 to land on heads and 𝑞 = 1 − 𝑝 to land on tails, is
thrown 𝑘 times. Let 𝑎𝑛 be the probability of seeing exactly 𝑛 heads, or 𝑎𝑛 =

(𝑘
𝑛

)
𝑞𝑘−𝑛𝑝𝑛.

Using the binomial theorem, the generating function for the sequence is

𝐴(𝑥) =
∑︁
𝑛≥0

𝑎𝑛𝑥
𝑛 =

∑︁
𝑛≥0

(
𝑘

𝑛

)
𝑞𝑘−𝑛𝑝𝑛 = (𝑞 + 𝑝𝑥)𝑘

which is equivalent to

(𝑞 + 𝑝𝑥) (𝑞 + 𝑝𝑥)...(𝑞 + 𝑝𝑥)︸                               ︷︷                               ︸
k times
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(The generating function 𝐴(𝑥) = (𝑞 + 𝑝𝑥)𝑘 , when multiplied out, has 2𝑘 terms, with
combinations of coefficients q (the number of tails) and p (the number of heads) that
correspond to each possible sequence of coin flips of size n.)

3 Multiplication of Generating Functions

Taking the Cartesian Product of two classes is equivalent to multiplying their generating
functions. The dice example below Theorem 1 is an intuitive way of seeing this.

Theorem 1. Let A and B be classes with generating functions 𝐴(𝑥) and 𝐵(𝑥). Then the
class C = A × B has the generating function 𝐶 (𝑥) = 𝐴(𝑥)𝐵(𝑥).

Proof. Let 𝑐𝑛 be the number of objects of size 𝑛 in the Cartesian product C = A × B. To
make each object 𝑐 = (𝑎, 𝑏), we pick an object 𝑎 𝜖 A of size 𝑘 ≤ 𝑛 and an object 𝑏 𝜖 B of
size 𝑛 − 𝑘 . So we have a total size of 𝑛 = 𝑘 + (𝑛 − 𝑘) for each object 𝑐 = (𝑎, 𝑏):

𝑐𝑛 =

𝑛∑︁
𝑘=0

𝑎𝑘𝑏𝑛−𝑘

Now, looking at the individual generating functions of 𝐴(𝑥) =
∑

𝑘≥0 𝑎𝑘𝑥
𝑘 and 𝐵(𝑥) =∑

𝑘≥0 𝑏𝑘𝑥
𝑘 , their product is

𝐴(𝑥)𝐵(𝑥) =
(∑︁
𝑘≥0

𝑎𝑘𝑥
𝑘

)
×

(∑︁
𝑘≥0

𝑏𝑘𝑥
𝑘

)
To get an element with 𝑥𝑛 from this product (which is needed to show 𝐶 (𝑥) = ∑

𝑛≥0 𝑐𝑛𝑥
𝑛 =

𝐴(𝑥)𝐵(𝑥)), we need the exponents from each 𝑎 and 𝑏 to multiply together to n. So, you can
multiply each 𝑎𝑘𝑥

𝑘 for 𝑘 ≤ 𝑛 from 𝐴(𝑥) by 𝑏𝑛−𝑘𝑥𝑛−𝑘 from 𝐵(𝑥):

𝐴(𝑥)𝐵(𝑥) =
∑︁
𝑛≥0

(
𝑛∑︁

𝑘=0
𝑎𝑘𝑏𝑛−𝑘

)
𝑥𝑛 =

∑︁
𝑛≥0

𝑐𝑛𝑥
𝑛 = 𝐶 (𝑥)

Which completes the proof. □

3.1 Example: Multiplying Generating Functions of Two Dice

Now as an example of the above theorem, imagine we have two dice: a 6-sided die (numbered
1 to 6) and a 8-sided die (numbered 1 to 8). We roll both dice to get a sum and want to
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know how many ways 𝑐𝑛 we can get each sum 𝑛. The generating function for the sum,
𝐶 (𝑥) = ∑

𝑛≥0 𝑐𝑛𝑥
𝑛, is given by

𝐶 (𝑥) = (𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6)︸                             ︷︷                             ︸
possible outcomes of the first die

× (𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8)︸                                           ︷︷                                           ︸
possible outcomes of the second die

with the result of this multiplication being

𝐶 (𝑥) = (𝑥2 + 2𝑥3 + 3𝑥4 + 4𝑥5 + 5𝑥6 + 6𝑥7 + 6𝑥8 + 6𝑥9 + 5𝑥10 + 4𝑥11 + 3𝑥12 + 2𝑥13 + 𝑥14)

where each exponent 𝑛 is the combined value of the two dice (the size), and each coefficient
𝑐𝑛 is the number of possible outcomes with that size.

(If we consider a die of 𝑖 sides as 𝐴𝑖 , the above example can also be written as𝐶 (𝑥) = 𝐴6𝐴8.)

Notation Note: If we multiply a class by itself multiple times, we use the notation

A𝑘 = A × A × ... × A︸             ︷︷             ︸
k times

By theorem 1, the generating function for this class is 𝐴(𝑥)𝑘 = 𝐴(𝑥) × 𝐴(𝑥) × ... × 𝐴(𝑥)︸                           ︷︷                           ︸
k times

.

For example, the generating function for the sum of 5 six-sided dice is

𝐶 (𝑥) = (𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6)5

4 Dots and Dashes Example

Suppose we need to send a message using only dots and dashes (like in Morse code), where
a dot • takes 1 time unit to send, and a dash — takes 2 time units. How many different
messages can we send in 𝑛 time units? We can let 𝑓𝑛 represent the number of ways to send a
message of size 𝑛, where 𝑛 is the total number of time units in the message. We can make a
table with some of the first messages in the sequence to see if we can find a pattern:
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n 1 2 3 4 5 ...
𝑓𝑛 1 2 3 5 8 ...

messages of time n • •• ••• •••• •••••
— — • — •• — •••

• — • — • • — ••
•• — •• — •
— — ••• —

— — •
— • —
• — —

So for any 𝑓𝑛, we can try to define this relationship recursively. We know that the last symbol
has to be either a dot or a dash. If the last symbol is a dot, then we have 𝑓𝑛 = 𝑓𝑛−1 + dot,
otherwise if it’s a dash, then we have 𝑓𝑛 = 𝑓𝑛−2 + dash. Observing the pattern a bit closer,
we can also clearly see it’s similar to the Fibonacci sequence:

𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2

We can write this in summation notation to connect it to generating functions:

𝐹 (𝑥) =
∞∑︁
𝑗=0

𝑓 𝑗𝑥
𝑗

But notice that this definition includes 𝑓0, the empty message with 𝑛 = 0. So if we wrote
out this series, we’d get

𝐹 (𝑥) = 1 + 𝑥 + 2𝑥2 + 3𝑥3 + 5𝑥4 + ...

and since we need to define 𝑓𝑛 in terms of the previous two elements, we want to also define
the generating function 𝐹 (𝑥) in terms of itself to try to solve for a closed form. So let’s shift
the terms by multiplying by factors of x:

𝑥𝐹 (𝑥) = 𝑥 + 𝑥2 + 2𝑥3 + 3𝑥4 + ...

𝑥2𝐹 (𝑥) = 1𝑥2 + 1𝑥3 + 2𝑥4 + ...

And adding together 𝑥𝐹 (𝑥) + 𝑥2𝐹 (𝑥) gives us 𝑥 + 2𝑥2 + 3𝑥3 + 5𝑥4 + ... = 𝐹 (𝑥) − 1, showing
that the recursive sequence needs another initial element to account for 𝑓0. Therefore,
solving for the recursive generating function, we get
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𝐹 (𝑥) = 1 + 𝑥𝐹 (𝑥) + 𝑥2𝐹 (𝑥) = 1
1 − 𝑥 − 𝑥2

To get more information on the coefficients 𝑓𝑛 of the generating function, we can factor
the polynomial we get and convert it to a sum of simpler rational functions using partial
fraction decomposition. So first, we get

1 − 𝑥 − 𝑥2 = (1 − 𝑟1𝑥) (1 − 𝑟2𝑥)

where 𝑟1 = 1+
√

5
2 , 𝑟2 = 1−

√
5

2 are the inverses of the roots of the function, and we can break
apart this fraction using these roots:

𝐹 (𝑥) = 𝑎

1 − 𝑟1𝑥
+ 𝑏

1 − 𝑟2𝑥
where 𝑎 =

1
√

5

(
1 +

√
5

2

)
, 𝑏 = − 1

√
5

(
1 −

√
5

2

)
The reason why we’re factoring out the roots into simpler fractions is so that we can get the
generating function in the form of sums of geometric series 1

1−𝛼𝑥
. The Taylor series of a

geometric function is

1
1 − 𝛼𝑥

= 1 + 𝛼𝑥 + 𝛼2𝑥2 + 𝛼3𝑥3 + ...

Now we can write out 𝐹 (𝑥) in terms of simple geometric series to try to solve for 𝑓𝑛, so if
we expand the series we get the following, with the polynomials now only in the numerator:

𝐹 (𝑥) = 𝑎(1 + 𝑟1𝑥 + 𝑟2
1𝑥

2 + 𝑟3
1𝑥

3 + ...) + 𝑏(1 + 𝑟2𝑥 + 𝑟2
2𝑥

2 + 𝑟3
2𝑥

3 + ...)

And because we know that 𝑎 = 1√
5
(𝑟1), 𝑏 = − 1√

5
(𝑟2), then

𝐹 (𝑥) = 1
√

5
(𝑟1 + 𝑟2

1𝑥 + 𝑟3
1𝑥

2 + 𝑟4
1𝑥

3 + ...) − 1
√

5
(𝑟2 + 𝑟2

2𝑥 + 𝑟3
2𝑥

2 + 𝑟4
2𝑥

3 + ...)

Which clearly shows us the form of 𝑓𝑛, the 𝑛th Fibonacci number. So writing down this
pattern by combining the terms for each 𝑥𝑛 monomial, we’ve solved for 𝑓𝑛, which is the
coefficient of each 𝑥𝑛 in 𝐹 (𝑥):

𝑓𝑛 =
1
√

5

(
𝑟𝑛+1

1 − 𝑟𝑛+1
2

)
=

1
√

5
©«
(
1 +

√
5

2

)𝑛+1

−
(
1 −

√
5

2

)𝑛+1ª®¬
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5 Generalized Recurrence Relations

Looking at the Dots and Dashes example, we can start to generalize the behavior of
recurrence equations of k terms using generating functions. So, if we gave some recurrence
relationship in terms of 𝑓𝑛, like

𝑓𝑛 = 𝛼 𝑓𝑛−1 + 𝛽 𝑓𝑛−2 + 𝛾 𝑓𝑛−3 + ...

we can start by writing the generating function in terms of 𝑓 𝑗 and 𝑥 𝑗 :

𝐹 (𝑥) =
∞∑︁
𝑗=0

𝑓 𝑗𝑥
𝑗

Then we can write 𝐹 (𝑥) in terms of itself including shifts (up to 𝑥𝑘), coefficients (𝛼, 𝛽, 𝛾, ...),
and 𝑝(𝑥), where 𝑝(𝑥) is defined as the initial terms that make the recurrence equation work
(e.g. 𝑝(𝑥) = 𝑓0 = 1 in the above example).

𝐹 (𝑥) = 𝛼𝑥𝐹 (𝑥) + 𝛽𝑥2𝐹 (𝑥) + 𝛾𝑥3𝐹 (𝑥) + ... + 𝑝(𝑥)

The additional term 𝑝(𝑥) can have a maximum degree of 𝑘 − 1 if the recurrence equation
has 𝑘 terms (since it accounts for the initial value–for example, if the recurrence equation
had 3 terms, the maximum degree of 𝑝(𝑥) would be 2).

𝐹 (𝑥) = 𝑝(𝑥)
𝛼𝑥 + 𝛽𝑥2 + 𝛾𝑥3 + ...

Like in the previous example, we can try to factor the denominator to get simple fractions in
geometric form (letting some online tool find our roots 𝑟1, 𝑟2, ..., 𝑟𝑘 for us):

1 − 𝛼𝑥 − 𝛽𝑥2 − 𝛾𝑥3 − ... = (1 − 𝑟1𝑥) (1 − 𝑟2𝑥) (1 − 𝑟3𝑥)...

(Do note that since the fraction is in the denominator, these roots are actually the zeros of
the inverse of the polynomial. For example, for k=3, then we have 𝑦3 − 𝛼𝑦2 − 𝛽𝑦 − 𝛾 = 0
with 𝑦 = 1

𝑥
). We then use partial fraction decomposition to get 𝐹 (𝑥):

𝐹 (𝑥) = 𝑎

1 − 𝑟1𝑥
+ 𝑏

1 − 𝑟2𝑥
+ 𝑐

1 − 𝑟3𝑥
+ ...
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So just like in the Dots and Dashes example, we look at the generating function 𝐹 (𝑥), then
perform a series expansion on each of these geometric equations, and finally add up the
coefficients for each 𝑥𝑛 in

𝐹 (𝑥) =
∞∑︁
𝑛=0

𝑓𝑛𝑥
𝑛

. Looking at the resulting pattern from each of these terms gives us 𝑓𝑛, a generic term of the
recurring sequence, in terms of 𝑛, the constants 𝑎, 𝑏, 𝑐, ..., and the roots 𝑟1, 𝑟2, 𝑟3, ...:

𝑓𝑛 = 𝑎𝑟𝑛1 + 𝑏𝑟𝑛2 + 𝑐𝑟𝑛3 + ...

So now, by using generating functions, we have a closed form of the general recurrence
equation 𝑓𝑛 = 𝛼 𝑓𝑛−1 + 𝛽 𝑓𝑛−2 + 𝛾 𝑓𝑛−3 + ... in terms of the roots of 𝑝 (𝑥 )

𝛼𝑥+𝛽𝑥2+𝛾𝑥3+... .

6 Additional Notes

The union of classes is equivalent to the addition of their generating functions.

For sequences, we can represent their generating functions as

𝐹 (𝑥) =
∑︁
𝑘≥0

𝐴(𝑥)𝑘 =
𝑝(𝑥)

1 − 𝐴(𝑥)

where the set of finite sequences of elements of A is defined as C = 𝑆𝑒𝑞(A) = ∪𝑘≥0A
𝑘 , so

if A = {0, 1}, then

A3 = {000, 001, 010, 011, 100, 101, 110, 111}

Generating functions can also help us express how many ways there are to give change for 𝑛
cents given some amount of coins (see the cited article, section 3).
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