An Overview on Generating Functions

Dawson Franz ${ }^{1}$

Abstract

In this lecture we will discuss generating functions, which are used to represent and analyze the solution to an enumeration problem, often in a simpler form than the sequence that defines the problem. These functions are a powerful "bookkeeping tooländ we will show how they can be used to solve generalized recurrence relations and to find a generic term of a recurring sequence with k terms.

Keywords: Generating Functions; Recurrence Relations

1 Terminology Review

This lecture will mainly focus on how to solve and succinctly represent the answer to enumeration problems using something called a generating function. But first, what exactly is an enumeration problem? It is figuring out how many objects of size n fit a specific definition. Some examples of enumeration problems include the following:

1. How many permutations are there of the set $\{1,2, \ldots, n\}$?
a. There are \mathbf{n} ! permutations
2. How many binary sequences, or strings, are there of length n ?
a. There are $\mathbf{2}^{\mathbf{n}}$ unique strings $(0 \ldots 00,0 \ldots 11, \ldots, 1 \ldots 11$ where each is length $n)$.

Before starting this lecture, here's a few notations and definitions that are helpful to remember as we see more examples:

- The binomial theorem (which expands something raised to a finite power) states:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

- A class \mathbb{A} is a collection of sets $\left\{\mathbb{A}_{n}\right\}$ indexed by natural numbers $n \in \mathbb{N}$. For example, if \mathbb{A} is a class of permutations, \mathbb{A}_{n} is the class of permutations of size n.
- $\quad \mathbf{a}_{\mathbf{n}}$, which is the number of objects of size n , represents a sequence of numbers.

[^0]
2 Defining Generating Functions

A generating function is another way to represent a sequence of numbers or a "bookkeeping tool."This form is often simpler than the sequence itself.

Def. 1: Let $\left(a_{n}\right)_{n \geq 0}$. This sequence's generating function is the following series:

$$
A(x)=\sum_{n \geq 0} a_{n} x^{n}=a_{0} x^{0}+a_{1} x^{1}+\ldots+a_{n} x^{n}
$$

This also defines the generating function of an enumerable class \mathbb{A} with a_{n} objects of size n in the class.

2.1 Example: Binomial Theorem

Let $a_{n}=\binom{k}{n}$ for $n \leq k$ and $a_{n}=0$ for $n>k$.
Through the binomial theorem, the sum for $\mathrm{A}(\mathrm{x})$ can be represented as

$$
A(x)=\sum_{n \geq 0} a_{n} x^{n}=\sum_{n \geq 0}\binom{k}{n} x^{n}=(1+x)^{k}
$$

So the generating function of $A(x)$ is $(1+x)^{k}$, where each element is a subset of $\{1,2, \ldots, k\}$ with the size n equal to the number of elements.

2.2 Example 2: Coin Tossing

A two-sided coin, with probability $p \geq 0$ to land on heads and $q=1-p$ to land on tails, is thrown k times. Let a_{n} be the probability of seeing exactly n heads, or $a_{n}=\binom{k}{n} q^{k-n} p^{n}$. Using the binomial theorem, the generating function for the sequence is

$$
A(x)=\sum_{n \geq 0} a_{n} x^{n}=\sum_{n \geq 0}\binom{k}{n} q^{k-n} p^{n}=(q+p x)^{k}
$$

which is equivalent to

$$
\underbrace{(q+p x)(q+p x) \ldots(q+p x)}_{\mathrm{k} \text { times }}
$$

(The generating function $A(x)=(q+p x)^{k}$, when multiplied out, has 2^{k} terms, with combinations of coefficients q (the number of tails) and p (the number of heads) that correspond to each possible sequence of coin flips of size n.)

3 Multiplication of Generating Functions

Taking the Cartesian Product of two classes is equivalent to multiplying their generating functions. The dice example below Theorem 1 is an intuitive way of seeing this.

Theorem 1. Let \mathbb{A} and \mathbb{B} be classes with generating functions $A(x)$ and $B(x)$. Then the class $\mathbb{C}=\mathbb{A} \times \mathbb{B}$ has the generating function $C(x)=A(x) B(x)$.

Proof. Let c_{n} be the number of objects of size n in the Cartesian product $\mathbb{C}=\mathbb{A} \times \mathbb{B}$. To make each object $c=(a, b)$, we pick an object $a \in \mathbb{A}$ of size $k \leq n$ and an object $b \in \mathbb{B}$ of size $n-k$. So we have a total size of $n=k+(n-k)$ for each object $c=(a, b)$:

$$
c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}
$$

Now, looking at the individual generating functions of $A(x)=\sum_{k \geq 0} a_{k} x^{k}$ and $B(x)=$ $\sum_{k \geq 0} b_{k} x^{k}$, their product is

$$
A(x) B(x)=\left(\sum_{k \geq 0} a_{k} x^{k}\right) \times\left(\sum_{k \geq 0} b_{k} x^{k}\right)
$$

To get an element with x^{n} from this product (which is needed to show $C(x)=\sum_{n \geq 0} c_{n} x^{n}=$ $A(x) B(x)$), we need the exponents from each a and b to multiply together to n . So, you can multiply each $a_{k} x^{k}$ for $k \leq n$ from $A(x)$ by $b_{n-k} x^{n-k}$ from $B(x)$:

$$
A(x) B(x)=\sum_{n \geq 0}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n}=\sum_{n \geq 0} c_{n} x^{n}=C(x)
$$

Which completes the proof.

3.1 Example: Multiplying Generating Functions of Two Dice

Now as an example of the above theorem, imagine we have two dice: a 6 -sided die (numbered 1 to 6) and a 8 -sided die (numbered 1 to 8). We roll both dice to get a sum and want to
know how many ways c_{n} we can get each sum n. The generating function for the sum, $C(x)=\sum_{n \geq 0} c_{n} x^{n}$, is given by

$$
C(x)=\underbrace{\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)}_{\text {possible outcomes of the first die }} \times \underbrace{\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}\right)}_{\text {possible outcomes of the second die }}
$$

with the result of this multiplication being

$$
C(x)=\left(x^{2}+2 x^{3}+3 x^{4}+4 x^{5}+5 x^{6}+6 x^{7}+6 x^{8}+6 x^{9}+5 x^{10}+4 x^{11}+3 x^{12}+2 x^{13}+x^{14}\right)
$$

where each exponent n is the combined value of the two dice (the size), and each coefficient c_{n} is the number of possible outcomes with that size.
(If we consider a die of i sides as A_{i}, the above example can also be written as $C(x)=A_{6} A_{8}$.)

Notation Note: If we multiply a class by itself multiple times, we use the notation

$$
\mathbb{A}^{k}=\underbrace{\mathbb{A} \times \mathbb{A} \times \ldots \times \mathbb{A}}_{\mathrm{k} \text { times }}
$$

By theorem 1, the generating function for this class is $A(x)^{k}=\underbrace{A(x) \times A(x) \times \ldots \times A(x)}_{\mathrm{k} \text { times }}$.
For example, the generating function for the sum of 5 six-sided dice is

$$
C(x)=\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)^{5}
$$

4 Dots and Dashes Example

Suppose we need to send a message using only dots and dashes (like in Morse code), where a dot \bullet takes 1 time unit to send, and a dash - takes 2 time units. How many different messages can we send in n time units? We can let f_{n} represent the number of ways to send a message of size n, where n is the total number of time units in the message. We can make a table with some of the first messages in the sequence to see if we can find a pattern:

n	1	2	3	4	5	\ldots
f_{n}	1	2	3	5	8	\ldots
messages of time n	\bullet	$\bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	
		-	$-\bullet$	$-\bullet \bullet$	$-\bullet \bullet \bullet$	
			$\bullet-$	$\bullet-\bullet$	$\bullet-\bullet$	
				$\bullet \bullet-$	$\bullet \bullet-\bullet$	
				$\bullet \bullet-$ 		
					$\bullet-$	
					$\bullet-$	

So for any f_{n}, we can try to define this relationship recursively. We know that the last symbol has to be either a dot or a dash. If the last symbol is a dot, then we have $f_{n}=f_{n-1}+$ dot, otherwise if it's a dash, then we have $f_{n}=f_{n-2}+$ dash. Observing the pattern a bit closer, we can also clearly see it's similar to the Fibonacci sequence:

$$
f_{n}=f_{n-1}+f_{n-2}
$$

We can write this in summation notation to connect it to generating functions:

$$
F(x)=\sum_{j=0}^{\infty} f_{j} x^{j}
$$

But notice that this definition includes f_{0}, the empty message with $n=0$. So if we wrote out this series, we'd get

$$
F(x)=1+x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots
$$

and since we need to define f_{n} in terms of the previous two elements, we want to also define the generating function $F(x)$ in terms of itself to try to solve for a closed form. So let's shift the terms by multiplying by factors of x :

$$
\begin{aligned}
& x F(x)=x+x^{2}+2 x^{3}+3 x^{4}+\ldots \\
& x^{2} F(x)=1 x^{2}+1 x^{3}+2 x^{4}+\ldots
\end{aligned}
$$

And adding together $x F(x)+x^{2} F(x)$ gives us $x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots=F(x)-1$, showing that the recursive sequence needs another initial element to account for f_{0}. Therefore, solving for the recursive generating function, we get

$$
F(x)=1+x F(x)+x^{2} F(x)=\frac{1}{1-x-x^{2}}
$$

To get more information on the coefficients f_{n} of the generating function, we can factor the polynomial we get and convert it to a sum of simpler rational functions using partial fraction decomposition. So first, we get

$$
1-x-x^{2}=\left(1-r_{1} x\right)\left(1-r_{2} x\right)
$$

where $r_{1}=\frac{1+\sqrt{5}}{2}, r_{2}=\frac{1-\sqrt{5}}{2}$ are the inverses of the roots of the function, and we can break apart this fraction using these roots:

$$
F(x)=\frac{a}{1-r_{1} x}+\frac{b}{1-r_{2} x} \text { where } a=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right), b=-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)
$$

The reason why we're factoring out the roots into simpler fractions is so that we can get the generating function in the form of sums of geometric series $\frac{1}{1-\alpha x}$. The Taylor series of a geometric function is

$$
\frac{1}{1-\alpha x}=1+\alpha x+\alpha^{2} x^{2}+\alpha^{3} x^{3}+\ldots
$$

Now we can write out $F(x)$ in terms of simple geometric series to try to solve for f_{n}, so if we expand the series we get the following, with the polynomials now only in the numerator:

$$
F(x)=a\left(1+r_{1} x+r_{1}^{2} x^{2}+r_{1}^{3} x^{3}+\ldots\right)+b\left(1+r_{2} x+r_{2}^{2} x^{2}+r_{2}^{3} x^{3}+\ldots\right)
$$

And because we know that $a=\frac{1}{\sqrt{5}}\left(r_{1}\right), b=-\frac{1}{\sqrt{5}}\left(r_{2}\right)$, then

$$
F(x)=\frac{1}{\sqrt{5}}\left(r_{1}+r_{1}^{2} x+r_{1}^{3} x^{2}+r_{1}^{4} x^{3}+\ldots\right)-\frac{1}{\sqrt{5}}\left(r_{2}+r_{2}^{2} x+r_{2}^{3} x^{2}+r_{2}^{4} x^{3}+\ldots\right)
$$

Which clearly shows us the form of f_{n}, the nth Fibonacci number. So writing down this pattern by combining the terms for each x^{n} monomial, we've solved for f_{n}, which is the coefficient of each x^{n} in $F(x)$:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(r_{1}^{n+1}-r_{2}^{n+1}\right)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right)
$$

5 Generalized Recurrence Relations

Looking at the Dots and Dashes example, we can start to generalize the behavior of recurrence equations of k terms using generating functions. So, if we gave some recurrence relationship in terms of f_{n}, like

$$
f_{n}=\alpha f_{n-1}+\beta f_{n-2}+\gamma f_{n-3}+\ldots
$$

we can start by writing the generating function in terms of f_{j} and x^{j} :

$$
F(x)=\sum_{j=0}^{\infty} f_{j} x^{j}
$$

Then we can write $F(x)$ in terms of itself including shifts (up to x^{k}), coefficients ($\alpha, \beta, \gamma, \ldots$), and $p(x)$, where $p(x)$ is defined as the initial terms that make the recurrence equation work (e.g. $p(x)=f_{0}=1$ in the above example).

$$
F(x)=\alpha x F(x)+\beta x^{2} F(x)+\gamma x^{3} F(x)+\ldots+p(x)
$$

The additional term $p(x)$ can have a maximum degree of $k-1$ if the recurrence equation has k terms (since it accounts for the initial value-for example, if the recurrence equation had 3 terms, the maximum degree of $p(x)$ would be 2).

$$
F(x)=\frac{p(x)}{\alpha x+\beta x^{2}+\gamma x^{3}+\ldots}
$$

Like in the previous example, we can try to factor the denominator to get simple fractions in geometric form (letting some online tool find our roots $r_{1}, r_{2}, \ldots, r_{k}$ for us):

$$
1-\alpha x-\beta x^{2}-\gamma x^{3}-\ldots=\left(1-r_{1} x\right)\left(1-r_{2} x\right)\left(1-r_{3} x\right) \ldots
$$

(Do note that since the fraction is in the denominator, these roots are actually the zeros of the inverse of the polynomial. For example, for $\mathrm{k}=3$, then we have $y^{3}-\alpha y^{2}-\beta y-\gamma=0$ with $y=\frac{1}{x}$). We then use partial fraction decomposition to get $F(x)$:

$$
F(x)=\frac{a}{1-r_{1} x}+\frac{b}{1-r_{2} x}+\frac{c}{1-r_{3} x}+\ldots
$$

So just like in the Dots and Dashes example, we look at the generating function $F(x)$, then perform a series expansion on each of these geometric equations, and finally add up the coefficients for each x^{n} in

$$
F(x)=\sum_{n=0}^{\infty} f_{n} x^{n}
$$

. Looking at the resulting pattern from each of these terms gives us f_{n}, a generic term of the recurring sequence, in terms of n, the constants a, b, c, \ldots, and the roots $r_{1}, r_{2}, r_{3}, \ldots$:

$$
f_{n}=a r_{1}^{n}+b r_{2}^{n}+c r_{3}^{n}+\ldots
$$

So now, by using generating functions, we have a closed form of the general recurrence equation $f_{n}=\alpha f_{n-1}+\beta f_{n-2}+\gamma f_{n-3}+\ldots$ in terms of the roots of $\frac{p(x)}{\alpha x+\beta x^{2}+\gamma x^{3}+\ldots}$.

6 Additional Notes

The union of classes is equivalent to the addition of their generating functions.
For sequences, we can represent their generating functions as

$$
F(x)=\sum_{k \geq 0} A(x)^{k}=\frac{p(x)}{1-A(x)}
$$

where the set of finite sequences of elements of \mathbb{A} is defined as $\mathbb{C}=\operatorname{Seq}(\mathbb{A})=U_{k \geq 0} \mathbb{A}^{k}$, so if $\mathbb{A}=\{0,1\}$, then

$$
\mathbb{A}^{3}=\{000,001,010,011,100,101,110,111\}
$$

Generating functions can also help us express how many ways there are to give change for n cents given some amount of coins (see the cited article, section 3).

7 Bibliography

M. Goemans. Generating Functions. https://math.mit.edu/ goemans/18310S15/generatingfunctionnotes.pdf. March 1, 2015.

[^0]: ${ }^{1}$ Columbia University, Mathematics, New York, New York, drf2138@columbia.edu

