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We mainly follow the book ”Combinatorics of Coxeter Groups” in this half of

the lecture.

Definition Reflections:= Let (W,S) denote a Coxeter system. Then elements

of the set T = {wsw−1 : s ∈ s, w ∈ W} are called reflections.

Definition ti:=Given a word s1s2...sk ∈ S∗, define ti = s1s2...si−1sisi−1...s2s1,

for 1 ≤ i ≤ k.

Lemma 1.3.1 If w = s1s2...sk, with k minimal, then ti ̸= tj for all 1 ≤ i < j ≤

k.

Proof: If ti = tj for some i < j, then w = titjs1s2...sk = s1...ŝi...ŝj ...sk (which

means si and sj are deleted), which contradicts the minimality of k.

Definition TL and TR:= Let (W,S) be a Coxeter system, then each ele-

ment w ∈ W can be written as a product of generators w = s1s2...sk with

si ∈ S. If k is minimal among all such expressions for w, then k is called the
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length of w and denoted l(w) = k. Based on this definition of l, we define

TL(w) = {t ∈ T : l(tw) < l(w)} and TR(w) = {t ∈ T : l(wt) < l(w}. Note that

T here means the set of reflections.

Corollary 1.4.5 |TL(w)| = l(w)

Proof: Let w = s1s2...sk, k = l(w). Then TL(w) = {s1s2...si...s2s1 : 1 ≤ i ≤ k}

by Corollary 1.4.4 (which basically says that l(tw) < l(w) is equivalent to t look-

ing like s1s2...si...s2s1 for some i), and these elements are all distinct by Lemma

1.3.1.

Definition 2.1.1 v < w:= Let u, v ∈ W , then i) u →t w means that u−1w =

t ∈ T and l(u) < l(w); ii) u → w means that u →t w for some t ∈ T ; iii) u ≤ w

means that there exists wi ∈ W so that u = u0 → u1 → ... → uk−1 → uk = w.

Proposition 2.3.1 (statement without proof) (i) If W is finite, there exists

an element w0 ∈ W such that w ≤ w0 for all w ∈ W . (ii) Conversely, suppose

that (W,S) has an element x such that DL(x) = S (Here DL(x) = TL(x) ∩ S,

similarly with DR(x)). Then, W is finite and x = w0.

Proposition 2.3.2 The top element w0 of a finite group has the following

properties: (i) w2
0 = e. (ii) l(ww0) = l(w0) − l(w), for all w ∈ W . (iii)

TL(ww0) = T \ TL(w), for all w ∈ W . (iv) l(w0) = |T |.

Proof: (i) Since l(w−1
0 ) = l(w0), uniqueness of w0 implies that w−1

0 = w0.

(ii) The inequality ≥ follows from l(w1) + l(ww0) ≥ l(w0). For the oppo-

site inequality, we will use induction on l(w0) − l(w), starting with w = w0.

For w < w0, choose s ∈ S such that w < sw. This is possible according

to Proposition 2.3.1(ii). Then, l(ww0) ≤ l(sww0) + 1 ≤ l(w0) − l(sw) + 1 =
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l(w0)− (l(w)+1)+1 = l(w0)− l(w). (iii) A consequence of (ii) is that for every

t ∈ T and w ∈ W : tw < w is equivalent to tww0 > ww0. (iv) Putting w = e in

equation (iii) and using Corollary 1.4.5, we get l(w0) = |TL(w0)| = |T |.

Corollary 2.3.3 (i) l(w0w) = l(w0)−l(w), for all w ∈ W . (ii) l(w0ww0) = l(w),

for all w ∈ W .

Proof: l(w0w) = l(w−1w0) = l(w0)− l(w−1) = l(w0)− l(w).

Example The top element w0 in the symmetric group Sn is the “reversal

permutation” i → n + 1 − i. Hence, the effects of the mappings of Proposi-

tion 2.3.4 in S5 are exemplified by 41523 → 32514(ww0) (reverse the places),

41523 → 25143(w0w) (reverse the values), and 41523 → 34152(w0ww0) (reverse

places and values). To prove that the top element in Sn is the ”reversal permu-

tation”, it suffices to write the reversal permutation as (n, n− 1, n− 2, ..., 2, 1).

From the previous half of the lecture, we know that the length of an element in

Sn is its number of inversions, (which means number of pairs of (i, j) so that

i < j and π(i) > π(j)) which we could read off the presentation as the num-

ber of pairs of elements so that the first element in the pair is bigger than the

second. So, the reversal permutation indeed has the largest length by this pre-

sentation. Alternatively, we could prove that the reversal permutation has the

largest length by looking at its strand diagram. When 2 lines only cross once,

the strand diagram is reduced and the number of crossings equal the length of

the permutation. For instance, in the S4 case, we have the following diagram,

which proves that the reversal permutation has length 6 in the case of S4.
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Example We know that Dn has the presentation < s, t|s2 = e, t2 = e, (st)mst =

e >. If we start out with the element s, then we need the sequence to be alter-

nating, i.e., we need it to be like stst.... We have to stop when we reached the

mst element in the sequence because of the following calculation: t · (stst...) =

t · (tsts...) = (sts...) with the first bracket possessing mst letters, the second

possessing mst letters, and the third possessing mst−1 letters. So, l(w0) = mst.

Now we look at a theorem in ”Introduction to Sergel Bimodules”.

Theorem 1.56 If two reduced words represent the same element in a Coxeter

group, then the first word could be transformed into the second word by repeat-

edly transforming parts that look like ”xyxy...” to ”yxyx...”, which is permitted

by braid relations in a Coxeter group.

(Do the rest if there are spare time.)

Now we look back to ”Combinatorics of Coxeter Groups” for Matsumoto’s the-

orem, which we state after presenting two necessary definitions.

Definition Exchange Property:= A group is said to have the exchange prop-

erty if the following is true: Let w = s1s2...sk be a reduced expression and s ∈ S.
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If l(sw) ≤ l(w), then sw = s1...ŝi...sk for some i ∈ [k].

Definition Deletion Property:= A group is said to have the deletion prop-

erty if the following is true: If w = s1s2...sk and l(w) < k, then w = s1...ŝi...ŝj ...sk

for some 1 ≤ i < j ≤ k.

Theorem 1.5.1 (with partial proof) Let W be a group and S a set of gen-

erators of order 2. Then the following are equivalent: (i) (W,S) is a Coxeter

system. (ii) (W,S) has the Exchange Property. (iii) (W,S) has the Deletion

Property

Proof: ((iii) implies (ii)) Suppose l(ss1...sk) ≤ l(s1...sk) = k. Then, by the

Deletion Property, two letters can be deleted from ss1...sk, giving a new ex-

pression for sw. If s is not one of these letters, then ss1...sk = ss1...ŝi...ŝj ...sk

would give l(w) = l(s1...ŝi...ŝj ...sk) < k, a contradiction. Hence, s must be one

of the deleted letters and we obtain sw = ss1...sk = s1...ŝj ...sk.
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