Eulerian Polynomials

Notation 0.1

a. $\quad S_{n}=$ set of all permutations of $[n]$
b. Values of $w \in S_{n}$ are denoted as w_{i} or $w(i)$
c. In one line notation this is represented as $w=w_{1} w_{2} w_{3} \cdots w_{n}$
d. In two line notation this is represented as

$$
w=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
w_{1} & w_{2} & \cdots & w_{n}
\end{array}\right)
$$

Definition 1.1 Descents

Eulerian numbers are defined using descents, so let us define descents first.
For $w \in S_{n^{\prime}} i \in[n-1]$ is a descent of w if $w_{i}>w_{i+1}$

Example 1.2

Permutation: $612753948 \rightarrow 6 \cdot 127 \cdot 539$ - 48
Because $6>1,7>5,9>4$

Descent $D(w)=\left\{i \in[n-1] \mid w_{i}>w_{i+1}\right\}$
Descent set $\operatorname{des}(w)=\# D(w)$
So from the example $D(w)=\{1,4,5,7\}$ and $\operatorname{des}(w)=4$

Definition 2.1 Eulerian numbers

In combinatorics, the Eulerian number $A(n, k)$ is the number of permutations of the numbers 1 to n in which exactly k elements are greater than the previous element.
$A(n, k)=\#\left\{w \in S_{n} \mid \operatorname{des}(w)=k\right\}$ for $0 \leq k \leq n-1$
Example 2.2
$n=3, k=1$
$A(3,1)$

We are looking for permutations with $k=1$ descents
132, 213, 312, 231
In all of the above there is exactly 1 descent from $3 \rightarrow 2,2 \rightarrow 1,3 \rightarrow 1$, and $3 \rightarrow 1$
Hence, $A(3,1)=4$ in this example
NB Change k=1234567->0123456

$n \backslash k$	$1)$	${ }_{2}^{1}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{array}{r} 3 \\ 4 \end{array}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	㘯
1	1						
2	1	1					
3	1	4	1				
4	1	11	11	1			
5	1	(26)	66	26	1		
6	1	57	302	302	57	1	
7	1	120	1191	2416	1191	120	1

$A(n, k)=\#\{$ permutations of $[n]$ with $k-1$ descents $\}$

Example 2.3
Notice that $A(n, 0)=\#\{$ permutations with 0 descents $\}=1$, which is exactly $1: w=1234 \cdots n$
Similarly $A(n, n-1)=1$ because there is only one permutation where the number of descents is equal to the number of elements: $w=n, n-1, n-2, \cdots, 1$

Proposition 2.4

$A(n, k)=(k+1) \cdot A(n-1, k)+(n-k) A(n-1, k-1)$
Example 2.5
$n=5, k=1, A(5,1)=26=(1+1) \cdot A(4,1)+(5-1) A(4,0)=2 \cdot 11+4 \cdot 1=22+4=26$

Proof of 2.4

Let $w \in S_{n}$
$\operatorname{des}(w)$ either stays the same or drops by 1

- Case 1: descent stays the same when n is in the middle of a descent where $x>y$, so removing n preserves the descent between n and y so coefficient $=\mathrm{k}$

Or n is the last letter, so the number of descents does not change so coefficient $=k+1$

Hence number of options $=(k+1) \cdot A(n-1, k)$

- Case 2: the number of descents drops by 1 . So here $x<y$

Case 2: $\operatorname{des}\left(\pi^{\prime}\right)=k-1$
Similar to above but we now can only put n in between places $x y$ where $x<y$. The total number of these places is $(n-2)-(k-1))=n-k-1$ (As there are $n-2$ places for descents in S_{n-1} and we are given that π^{\prime} has $k-1$ descents). Like before we have an additional case

$$
\pi^{\prime}=(\cdots) \mapsto \pi=n(\cdots)
$$

bringing the total places to put n into to $n-k$.

Example

Where can we insert 6 into the following permutation while preserving the number of descents? 13425

Let $\mathrm{n}=6, \mathrm{k}=2, \mathrm{n}-\mathrm{k}=4$
Generating function for $A(n, k)$
Problem that it is a triangle of numbers rather than a sequence, ie. it depends on two parameters.

Def $A_{n}(x)=\sum_{k=1}^{n} x^{k} \cdot \underbrace{A(n, k)}, n \geq 1$
Eulerian numbers are the coefficients

$$
A_{o}(x)=1
$$

In other words, $A_{n}(x)=\sum_{w \in S_{n}} x^{1+\operatorname{des}(w)}$
Proof $\quad A_{0}(x)=\sum_{w \in S_{n}} x^{1+\operatorname{des}(w)}=x^{0}=1$?

$$
\begin{aligned}
& A_{n}(x)=\sum_{k=1}^{n} A(n, k) x^{(c}=\sum_{k=1}^{n}\left(\sum_{w \in A(n, k)} 1\right) x^{k}=\sum_{u \in S_{n}}^{1} x \\
& A(x, 1 c) \\
& \prod_{k=1}^{n} A(n, k) \stackrel{(1)}{=} S_{n} \\
& \text { clef infant of } x^{k} \\
& \text { is \# of elc-1 } \\
& \operatorname{des}(\omega)={ }^{k-1} \text { descents } \\
& \text { 包 } \\
& \sum x^{\operatorname{des}(w)+1} \in \text { clef in fronton } \\
& x^{k+1} \text { is \# fec } \\
& w / k \text { descents } \\
& \begin{aligned}
A_{n}(x)=\sum_{k=1}^{n} A(n, k) x^{k}=\sum_{k=1}^{n}\left(\sum_{\omega \in A(n, h)}^{\left(\sum_{n} 1\right.}\right) x^{k}=\sum_{\omega \in S_{n}} x \\
=\operatorname{des}(\omega) \rightarrow \text { number of elements with }
\end{aligned}
\end{aligned}
$$

> h. 1 descents w / k descents
> \rightarrow number of elements with k descends

This leads to an interesting proposition

Proposition 1.8. For each $n \geq 0$, Not going to prove fully just start

$$
\frac{A_{n}(t)}{(1-t)^{n+1}}=\sum_{m \geq 0}(m+1)^{n} t^{m}
$$

Proof. I personally would leave this as an exercise with the hint to use the recursion given above.

$$
\sum_{m \geqslant 0} m^{n} \cdot x^{m}=\frac{A_{n}(x)}{(1-x)^{n+1}}
$$

Proof by induction
for each $n \geqslant 0$
Base case $n=0$

$$
\sum_{m>0} x^{m}=\frac{1}{1-x}-o k
$$

induction step : suppose the statement holds $+57 t^{4}+t^{5}$

$$
\sum_{m \geqslant 0} m^{n} x^{m}=\frac{A_{n}(x)}{(1-x)^{n+1}}
$$

Take derivative of multidy by x

$$
\begin{aligned}
\sum_{m \geqslant 1} m^{n+1} x^{m} & =\frac{x A_{n}^{\prime}(x) \cdot(1-x)^{n+1}+A_{n}(x)(n+1)(1-x)^{n}}{(1-x)^{2 n+2}} \\
& =\frac{x(1-x) A_{n}^{\prime}(x)+(n+1) \times A_{n}(x)}{(1-x)^{n+2}}
\end{aligned}
$$

want to prove:

$$
\sum_{m \geqslant 0} m^{n+1} x^{m}=\frac{A_{n+1}(x)}{(1-x)^{n+2}}
$$

So need:

$$
A_{n+1}(x)=x(1-x) A_{n}^{\prime} n(x)+(n+1) x A_{n}(x)
$$

Proposition 1.8. For each $n \geq 0$,

$$
\frac{A_{n}(t)}{(1-t)^{n+1}}=\sum_{m \geq 0}(m+1)^{n} t^{m}
$$

Proof. I personally would leave this as an exercise with the hint to use the recursion given above.

Theorem 1.9.

$$
\sum_{n \geq 0} A_{n}(t) \frac{x^{n}}{n!}=\frac{(1-t) e^{(1-t) x}}{1-t e^{(1-t) x}}
$$

Proof. Multiply both sides of Eq. (1) by $(1-t)^{n+1} x^{n} / n!$ and then sum from $n=0$ to infinity and we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} A_{n}(t) \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty}(m+1)^{n} t^{m}(1-t)^{n+1} \frac{x^{n}}{n!} & \stackrel{(a)}{=} \sum_{m=0}^{\infty} t^{m} \sum_{n=0}^{\infty}((m+1)(1-t))^{n}(1-t) \frac{x^{n}}{n!} \\
& \stackrel{(b)}{=} \sum_{m=0}^{\infty} t^{m}(1-t) e^{(m+1)(1-t) x} \\
& \stackrel{(c)}{=}(1-t) \sum_{m=0}^{\infty} t^{m} e^{m(1-t) x} e^{(1-t) x} \text { use identity } e^{y}= \\
& \stackrel{(d)}{=} \frac{(1-t) e^{(1-t) x}}{1-t e^{(1-t) x}}
\end{aligned}
$$

where

- In (a) we switched the order of summation.
- In (b) we used the identity $e^{y}=\sum_{j \geq 0} \frac{y^{j}}{j!}$.
- In (c) we used the identity $e^{a+b}=e^{a} e^{b}$ and moved ($1-t$) outside the sum as it doesn't depend on m. (Same will be true for $e^{(1-t) x}$ in next step)
- In (d) we used the formula for a geometric series with common ratio $t e^{(1-t) x}$

$18: 50 ?$

PART B $-\frac{7.2 \text { Descents and length generating functions }}{\text { The most important statistic about a coxeter group is }}$
its descent number

$$
\begin{aligned}
& \text { cent number } \\
& d(v)=\mid\{t \in S: l(v t)<\ell(v) \xi \mid
\end{aligned}
$$

Hence we get the following generating function

$$
W(t ; q)=\sum_{v \in W} t^{d(v)} q^{l(v)}
$$

For example

$$
\left.\begin{array}{l}
A_{2}(t ; q)=1+2 t q+2 t q^{2}+t^{2} q^{3} \\
B_{2}(t ; q)=1+2 t q+2+q^{2}+2 t q^{3}+t^{2} q^{4}
\end{array}\right\} \text { dihedral groups }
$$

Our aim is to obtain a simple recursive rule for computing the generating function for any coxeter group W. We can do this using the following theorem
the 7.2.1

$$
W(t ; q)=\sum_{J \leq S} t^{|J|}(1-t)^{|S \backslash J|} \frac{W(q)}{W_{S \backslash J}(q)}
$$

Will not prove fully but a hint is that we need to rewrite

$$
t^{d(v)}=\sum_{D(v) \subseteq J \subseteq s} t^{|J|}(1-t)^{|S| J \mid}
$$

from the generating function above.
Example on next page \downarrow

Theorem 7.2.1

$$
\begin{equation*}
W(t ; q)=\sum_{J \subseteq S} t^{|J|}(1-t)^{|S \backslash J|} \frac{W(q)}{W_{S \backslash J}(q)} . \tag{7.10}
\end{equation*}
$$

- No proof

Example

$$
\begin{aligned}
& E=\frac{x 1 ;}{w=N_{s}} w=S_{2}=A_{1} \quad 0_{i}^{\prime \prime 21}, J=d,\{s\} \\
& \text { Thrm } w=w_{s} \\
& \text { - } w_{s}(9)=1+9
\end{aligned}
$$

$$
\begin{aligned}
& s=21 c-1 \text { desunt, enenth }=1+9 t \\
& e=12 \leftarrow 0 \text { desconts, } l_{\text {ens }} \text { th } 0 \\
& \text { decent } \\
& w(t, q):=\sum_{w \in w} t^{d(w)} q^{l(\omega)^{\tau l o n g}+h}
\end{aligned}
$$

Ex1: $w=S_{2}=A_{1} \quad \circ_{s}^{\prime 21} \quad J=\varnothing,\{s\}$
Thm $w=w_{s}$

$$
\begin{aligned}
& \Rightarrow W_{s}(t ; q)=t^{|\phi|}(1-t)^{\mid\{s s \mid} \frac{W_{s}(q)}{W_{s}(q)}+t^{|\{s\}|}(1-t)^{|\phi|} \frac{W_{s}(q)}{W_{\phi}(q)} \\
& { }_{s} W_{s}(q)=1+q \\
& \quad(1-t)+t W_{s}(q)=(1-t)+t(1+q)=1+q^{t}
\end{aligned}
$$

However, there are sometimes better ways of computing $W(t ; q)$ if W is a member of certain infinite families of coxeter groups.
For example, $S_{n}(t ; q)$ does not factor nicely
so instead we do

$$
\sum_{n \geqslant 0} S_{n}(t ; q) \frac{x^{n}}{[n]_{q}:}=\frac{(1-t) \exp (x(1-t) ; q)}{1-\operatorname{texp}(x(1-t) ; q)}
$$

References:
B. E. Sagan. Combinatorics: the art of counting. Vol. 210. Graduate Studies in Mathematics. https://users.math.msu.edu/users/bsagan/Books/Aoc/final.pdf. American Mathematical Society, Providence, RI, [2020] ©2020, pp. xix+304.
A. Björner and F. Brenti. Combinatorics of Coxeter groups. Vol. 231. Graduate Texts in Mathematics. Springer, New York, 2005, pp. Xiv+363.
17. Eulerian numbers

Def
where $\exp (x ; q)=\sum_{n \geqslant 0} \frac{x^{n}}{[n] q!}$ class of n

If time:
of the
Proof of Euler's formula for values alternating ziemann zeta function
the function is $\varphi(s)=1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\frac{1}{4^{s}}+\ldots$ This converges for $\mathrm{Re}(s)>0$
and is related to the
ζ-function
$($ zeta) (zeta)

$$
f(s)=\left(-2^{1-s}\right) \zeta(s)
$$

Euler wants to calculate $\varphi(-n)$ for $n=0,1,2,3 \ldots$. So he introduces the Eulevian polynomials $P_{n}(t)$

$$
\sum_{k=0}^{\infty}(u+1)^{n} t^{k}=\frac{\rho_{n}(t)}{(1-t)^{n+1}}
$$

$\operatorname{tgh}(x) \rightarrow$ hyperbolic tangent

$$
\text { then } \quad \varphi(-n)=\ln (-1)^{2-n-1}
$$

Using the culerian polynomials we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P_{n}(t) \frac{x^{n}}{n!}=\frac{(1-t) e^{(1-t) x}}{1-t e^{(1-t) x}} \\
& =1+\operatorname{tgh}(x)
\end{aligned}
$$

Lastly, $\varphi(0)=\frac{1}{2} \quad \varphi(-n)=\frac{\operatorname{tgh}^{(n)}(0)}{2^{n+1}}$ for $n>0$

