Talia Fine The Combinatorics of Coxeter Groups October 4, 2022

Partially Ordered Sets (Posets) and Lattices

I. Definitions

- a) Partially Ordered Sets
- Definition: A partially ordered set or poset is a pair (P, ≤) where "P" is a set and "≤" is a binary relation on P satisfying the following axioms for all x, y, z ∈ P:
 - i) $x \le x$ (reflexivity) ii) if $x \le y$ and $y \le x$, then x = y (antisymmetry) iii) if $x \le y$ and $y \le z$, then $x \le z$ (transitivity)
- **Example:** You can tell (Z, \neq) is not a poset immediately because it's not reflexive.
- b) Lattices
- **Definition:** Lattices are an important class of partially ordered sets with the property that pairs of elements have greatest lower bounds and least upper bounds.
- II. Working with Posets
 - a) Drawing out Posets
 - The Hasse (Ha-suh) diagram of P is the graph with vertices P and an edge from x up to y if $x \le y$.
 - **Definition:** For $x \in P$ we say that x is covered (\triangleleft) by y, if x < y and there is no $z \in P$ with x < z < y.
 - C_n: The chain of length n is (C_n, ≤) where Cn = {0, 1, ..., n} and i ≤ j is the usual ordering of the integers.
 Example: C₃

- B_n : The Boolean algebra is (B_n, \subseteq) where $B_n = 2^{[n]}$ and $S \subseteq T$ is set containment.
 - Example: B₃

- D_n : The divisor lattice is(D_n , |) where D_n consists of all the positive integers which divide evenly into n and a | b means that a divides evenly into b (in that b/a is an integer).
 - **Example:** in D_{12} we have $2 \le 6$ but $2 \le 3$
 - Example: D₁₈

b) Minimal and Maximal Elements

-

- **Definition:** A minimal element of P is $x \in P$ such that there is no $y \in P$ with y < x. Note that P can have multiple minimal elements. Same true for maximal.
 - **Example:** 2 minimal elements below, a and b.

- **Definition**: P has a minimum element if there is $x \in P$ such that $x \leq y$ for every $y \in P$.
- Claim: A minimum element is unique if it exists because if x and x' are both minimum elements, then x ≤ x' and x' ≤ x which forces x = x' by antisymmetry.
 - In this case the minimum element is often denoted 0.
- In the daul case the maximum element is $x \in P$ which satisfies $x \ge y$ for all $y \in P$.
 - A maximum is unique if it exists and is denoted $\hat{1}$
- It's helpful to think of the actual Latin. "Minimum" means "smallest" and "Minimal" means "nothing is smaller."
- **Proposition 5.1.1** We have the following minimum and maximum elements:

- In C_n we have $\hat{0} = 0$, $\hat{1} = n$
- In B_n we have $\hat{0} = \emptyset$, $\hat{1} = [n]$
- In D_n we have $\hat{0} = 1$, $\hat{1} = n$
- c) Subposets
- We can learn more about poset P by looking at its substructures.
- **Definition:** A subposet of P is a subset $Q \subseteq P$ with the inherited partial order; namely $x \le y$ for x, $y \in Q$ if and only if $x \le y$ in P.
- **Example:** Assume x, $y \in P$. Then the corresponding closed interval is $[x, y] = \{z \in P \mid x \le z \le y\}$.
- Note that $[x, y] = \emptyset$ unless $x \le y$.
- **Example**: the Hasse diagram of the interval $[\{1, 3\}, \{1, 2, 3, 5, 6\}]$ in B_7 .

- d) Products of Posets
- We can also produce posets from from old ones via products.
- Given two (not necessarily disjoint) posets (P, ≤_P) and (Q, ≤_Q), their (direct or Cartesian) product has underlying set P × Q = {(x, y) | x ∈ P, y ∈ Q} together with the partial order
 (x, y) ≤P×Q (x', y') if x ≤_P x' and y ≤_Q y'.
- One can obtain the Hasse diagram for P × Q by replacing each vertex of Q with a copy of P and then, for each edge between two vertices of Q, connecting each pair of vertices having the same first coordinate in the corresponding two copies of P.
- **Proposition 5.2.1** We have the following product decompositions:
 - a) $B_n \cong C_1^n$
 - b) If the prime factorization of n is $n=p_1^{n_1}p_2^{n_2}\dots p_k^{n_k}$, then $D_n \cong C_{n_1} \ge C_{n_2} \ge \dots \ge C_{n_k}$
- **Example:** $B_3 \cong C_1^3$, isomorphic, same Hasse diagram.

- III. Observing Isomorphism
 - Start by considering maps on posets.

- **Definition** Assume posets P, Q. Then a function f: $P \rightarrow Q$ is order preserving if $x \leq_P y \Rightarrow f(x) \leq_Q f(y)$
- **Example:** The map $f : Cn \to Bn$ by f(i) = [i] is order preserving because $i \le j$ implies that $f(i) = [i] \subseteq [j] = f(j)$.
- We say that f is an isomorphism or that P and Q are isomorphic, written $P \cong Q$, if f is bijective (and both f and f^{-1} are order preserving).
 - It is important to show that f⁻¹, and not just f, is order preserving.
- Example: Two non-isomorphic posets.

- **Proposition 5.1.3** We have the following important isomorphism:

If l,
$$m \in D_n$$
 then $[l, m] \cong D_{m/l}$

- **Example:** if $l=2, m=8 \in D_n$ then $[2, 8] \cong D_{8/2}$

- If the Hasse Diagrams are the same then the two posets are isomorphic.

IV. Working With Lattices

- a) More on Lattices
- Lattices are an important class of partially ordered sets.
- **Definition:** If P is a poset and x, $y \in P$, then a lower bound for x, y is a $z \in P$ such that $z \le x$ and $z \le y$.
- **Example:** if S, $T \in Bn$, then any set contained in both S and T is a lower bound.
- We say that x, y have a greatest lower bound or meet if there is an element in P, denoted $x \land y$, which is a lower bound for x, y, and $x \land y \ge z$ for all lower bounds z of x and y.
- Returning to B_n , we have $S \land T = S \cap T$.
 - If the meet of x, y exists, then it is unique.
 - If z, z' are both greatest lower bounds of x, y, then we have $z \ge z'$ since z' is a lower bound and z is the greatest lower bound.
 - But interchanging the roles of z and z ' also gives $z' \ge z$. So z = z' by antisymmetry.
- Note also that it is possible for the meet not to exist.
- Example: in the poset of the figure below, a ∧ b does not exist because this pair has no lower bound. Also, c ∧ d does not exist but this is because the pair has both a and b as lower bounds, but there is no lower bound larger than both a and b.

These definitions can be extended from pairs of elements to any nonempty set of elements X = {x1, ..., xn} ⊆ P where the meet is denoted:

$$\bigwedge X = \bigwedge_{x \in X} x.$$

- The only element y of P such that $x \land y = x$ for all x is y = 1.
- The concepts of upper bound and least upper bound are obtained by reversing the inequalities in the definitions of the previous paragraph.
- If the least upper bound of x, y exists, then it is denoted x \lor y and is also called their join.
- Key Point: A lattice is a poset such that every pair of elements has a meet and a join.
- b) Terminology and Properties

Proposition 5.3.1. The posets C_n , B_n , D_n , Π_n , Y, K_n , and L(V) are all lattices for all nand V of finite dimension over some \mathbb{F}_q . In addition, we have the following descriptions of their meets and joins.

- (a) If i, j ∈ C_n, then i ∧ j = min{i, j} and i ∨ j = max{i, j}.
- (b) If $S, T \in B_n$, then $S \wedge T = S \cap T$ and $S \vee T = S \cup T$.
- (c) If $c, d \in D_n$, then $c \wedge d = gcd(c, d)$ and $c \vee d = lcm(c, d)$.

Proposition 5.3.2. Let L be a lattice. Then the following are true for all $x, y, z \in L$.

- (a) (Idempotent law) x ∧ x = x ∨ x = x.
- (b) (Commutative law) x ∧ y = y ∧ x and x ∨ y = y ∨ x.
- (c) (Associative law) (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨ (y ∨ z).
- (d) (Absorption law) x ∧ (x ∨ y) = x = x ∨ (x ∧ y).
- (e) $x \le y \iff x \land y = x \iff x \lor y = y$.
- (f) If $x \le y$, then $x \land z \le y \land z$ and $x \lor z \le y \lor z$.

References

- B. E. Sagan. Combinatorics: the art of counting. Vol. 210. Graduate Studies in Mathematics. https://users.math.msu.edu/users/bsagan/Books/Aoc/final.pdf. American Mathematical Society, Providence, RI, [2020] ©2020, pp. Xix+304.
- 2) Hasse Diagrams of Integer Divisors Wolfram Demonstrations Project
- 3) PARTIALLY ORDERED SETS, CMU Mathematics
- 4) Lec 16 2 Join, Meet, and All About Lattice