
Matroids + the work of June Huh

Consider a simple graph a triangle
• vertex

Graph Edge
• •

Mathematicians are interested in the following question :
How many different ways can you color the vertices of the

triangle given some number of colors and adhering
to the rule that whenever two vertices are connected by an

edge they can't be the same color ?

If you have q colors:

1. YOU have q options for the first vertex
2. g-1 options for the adjacent vertex because you can use any
color save the color you used to color the first vertex

3. g-2 options for the third vertex because you can use

any color save the two colors you used to color the

first two vertices

Total # of colorings : q ✗ Cq - 1) ✗ c g- 2) = 93-392+29

This equation is called the chromatic polynomial for the

graph

It has interesting properties
1. sequence is unimodal: The sequence peaks once

,
before that

rises and falls only after

for a triangle : 193-3921-29

113 , 2 (absolute value of the sequence )

Unimodal 113 , 2
✗ peak

other examples of unimodal sequences :
42 , 3 , 4, 5,413,2 , I

213 , 5 , 7, 9 ,
8
,
7
, 6,5

2 .
The sequence is

"
109 concave

"

meaning that any three
consecutive numbers in the sequence follow this rule:
the product of the outside two numbers is less than
the square of the middle number

C 1,3
,
2) is log concave CI ✗ 2 = 2 2 32 )

C 213 , 5) does not C 2×5=10 > 32 )

The fact that these two properties always holds is
called Read 's conjecture
> June Huh

,
the focus of the talk today proved this
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consider a slightly more complicated graph, a rectangle
• •

rectangles
• •

we can calculate the chromatic polynomial by breaking
up a graph into subgraphs
subgraphs are all the graphs you can make by deleting an

edge con edges ] from the original graph or by contracting
two vertices into one

• •
•

• &
• •

rectangle with rectangle with
deleted graph contracted edge

chromatic polynomial of the rectangle is equal to the chromatic

polynomial with one edge deleted minus the chromatic
polynomial of the triangle

@ ☆

chromatic
• •

• • polynomial
rectangle with rectangle with
deleted graph contracted edge

of rectangle
q4 -393+392 _ q 93-392+29 = 94-493+692-32
Log concavity is not always preserved with addition /subtraction but
with chromatic polynomials it is

MATROIDS '

.

Graphs are one type of object that can
define a more general structures called man

matroids .
consider for example ,

two points on a two - dimensional plane.
If more than two points lie on a line in this same plane,
you can say those points are dependent.
Matroids are abstract concepts that capture notions like
dependence and independence in all sorts of different
contexts . from graphs to vector spaces to algebraic
fields

Matroids associated with graphs :
we define a matroid MCG) associated with the graph G by
specifying the ground set and the independent set .

A subset of sets is called acrylic if it contains no

dem cycles
let E be a finite set and let I be a family of subsets
of E . Then the family I forms the independent sets of a
matroid µ if :
1) I -70 2) JEI and I C- J then I C-I
3) If I ,J c- I with II / < IJI then there is some element ✗ C- J- l with
1 U { ✗ 3 C-I

E is called the ground set of the matroid
→ write out def of independent/acrylic sets



Theorem 4. Ii let E be the set of edges of a graph and
let I be the collection of all subsets of edges
that are acrylic . Then M= CE

,
IT is a matroid

Example : we are going to compute the matroid associated
with the graph

a
.

b c

I. write out all independent sets

{ aib
,
c }

{a ,bY {a. C} { bic} 03,3 = Bs
{a} {b] { c} matroid Umn

is called the

∅ Boolean Algebra

VK.in is a uniform matroid : matroid in which the independent
sets are exactly the sets containing at most r elements

,
for some fixed integer

n= size of matroid
1<=2 refers to the fact that every subset of E ha that
has 2 or fewer subsets is independent
1h general VK.in is a matroid with IF / = n and every subset
of C- with K or fewer elements is independent

NOW
,
lets talk about the relationship between matroids and

graphs .

First important question : DO all matroids come from graphs ?
More precisely , can we always find a graph G with
MCG)= M ?
[ this means the independent sets of the matroid M must

precisely match the cycle - free subsets of edges of G. the

satisfying answer to this question is No

Matroids that do arise as cycle matroids are called graphic

Example 1.19 : the uniform matroid V2.4 in figure 1.25 is not
graphic £ •b £ •d

All graphic matroids are representable
crepresenlable definition: a matroid whose ground set f- is a set

of vectors )

RANK: Given any subset A of the ground set f- of the matroid
we can look at the size of all independent sets

that are contained in A. the largest such independent subset
of A is its rank
Definition 2.1.2 : let M= CE

,
I ) be a matroid and let

A C- E. The rank of A
,
written RCA) is the size of

the the largest independent subset of A

RCA) : -- Max { I :IE }I ≤ A



A set has rank 2 if it spans a line in the geometry. Among the points a,b,c and d, choosing any two (or more) except ab will 
span the line con- taining these four points. 

compute the ranks for Bn=Vn,n ,
the boolean algebra and V2.4

Bn = Unin
The rank of a boolean algebra Bn =h

{42,33 rank 3

{423 5433 { 433 rank 2 Everything is

{ 13 {23 {33 rank 1 a flat

∅

Next concept comes from geometry . A flat in a matroid is a

subset that is rank - maximal i if you add anything, to a

flat , its rank increases new

Definition 2.16 : let E be the ground set of the matroid M
.
.

A subset F. C- E is a flat if rcfv { ✗ 3) > rcf ) for any
✗ E F

Theorem 6.1 : Given a matroid M
, let ( FCM) , E) be the poset

where FCM) is the set of all
'

flats of M and E
is set inclusion

. Given CL , ≤) a lattice, TFAE
the following are equivalent

1) (↳≤ ) is a geometric lattice c. atomic and rank function is

Semion odvlar)

2) CL
,
≤) is isomorphic as a poset to CFCM) , ≤) for some

matroid M .

d) Characteristic Polynomials 17.2
> one way to get insight into a combinatorial object is to study
its generating function



let's define the characteristic polynomial of a graded poset
Definition 5.1.5 : let P be a finite ranked poset with rk
p=h .

The characteristic polynomial of P is

✗CP)=✗lP,'t ) = I mcxjtn- rkx
✗ EP

↳ this uses the one _ variable form of the Mobius function
NOW , we will compute the characteristic polynomials for some
of our standard example posets
we have the following characteristic polynomials
a) For Chi ✗ Ccn ) = th

- '

Ct - 1)

b) For Bn : XC Bn) = Ct - 1)
n

c) If n has prime factorization n=P,m' . . . pink and m=E;M;
then ✗ Cbn) = -1m

-kct - 1) k

for matroids :
The characteristic polynomial ✗CM, t ) of a matroid M

is ✗ CICM),t ) the characteristic polynomial of the
corresponding geometric lattice

NOW
, we are going to move to chromatic polynomial

cwhich is not the same as the characteristic polynomial )
Theorem 6.2: Given a graph G with chromatic polynomial

CCG,t) and let Gm be the corresponding
matroid . Then

, CCG.tl-t-XCGn.tl
Where c is the number of connected components of G

EXAMPLE:
Going back to the group :

a b C
= the set Bz

CCG
,
t ) = tlt - 1) Ct- 1) Ct - 1) = tct - 1)

3

we know XCBZ ,t) = Ct -173
c. =L ⇒ through the theorem CCG ,

f) = tcxCGm.to)
we have verified the equation for the chromatic polyn
- 0min of the example
In general to go from a matroid to a geometric lattice :

① Draw entire Boolean alg Bn
'

② Erase all subsets which are not flats

③ connect remaining edges



The Heron–Rota–Welsh unimodality conjecture ([32, 
56, 64]) asserts that the coeffi- cients of the 
characteristic polynomial of a matroid form a log-
concave sequence. This implies that the coefficients 
are unimodal. 

A special case of the conjecture is an earlier conjecture 
by Read, asserting that the coefficients of the 
chromatic polynomial of a graph are unimodal. In 2009 
June Huh used algebraic geometry to prove Read’s 
unimodality conjecture [33] for graphs, and the more 
general Heron–Rota–Welsh conjecture for matroids 
represented over a field of characteristic 0. The case of 
matroids representable over a field of a non-zero char- 
acteristic and the case of general matroids remained 
open. 

In 2010 June Huh and Eric Katz [36] found a different 
algebraic-geometric approach and proved the case of 
matroids repre- sentable over a field of an arbitrary 
characteristic. Finally, in 2015 the Heron–Rota–Welsh 
conjecture was proved in full generality by Karim 
Adiprasito, June Huh, and Eric Katz [1]. For this 
purpose it was necessary to extend theorems from 
algebraic geometry (primarily the Hodge–Riemann 
relations and the hard Lefschetz theorem) to cases well 
beyond the scope of algebraic geometry. Huh and his 
coauthors developed an entirely novel theory of great 
interest and importance.



Nine years later, at the age of 34, Huh is at the pinnacle of the math 
world. He is best known for his proof, with the mathematicians Eric 
Katz and Karim Adiprasito, of a long-standing problem called the 
Rota conjecture.

The mathematician Gian-Carlo Rota developed a number of 
different conjectures that bear his name.
Even more remarkable than the proof itself is the manner in which 
Huh and his collaborators achieved it — by finding a way to 
reinterpret ideas from one area of mathematics in another where 
they didn’t seem to belong. This past spring IAS offered Huh a 
long-term fellowship, a position that has been extended to only 
three young mathematicians before. Two of them (Vladimir 
Voevodsky and Ngô Bảo Châu) went on to win the Fields Medal, 
the highest honor in mathematics.

That Huh would achieve this status after starting mathematics so 
late is almost as improbable as if he had picked up a tennis racket 
at 18 and won Wimbledon at 20. It’s the kind of out-of-nowhere 
journey that simply doesn’t happen in mathematics today, where it 
usually takes years of specialized training even to be in a position to 
make new discoveries. Yet it would be a mistake to see Huh’s 
breakthroughs as having come in spite of his unorthodox beginning. 
In many ways they’re a product of his unique history — a direct 
result of his chance encounter, in his last year of college, with a 
legendary mathematician who somehow recognized a gift in Huh 
that Huh had never perceived himself.

9) June Huh's Life story
1) Childhood : Huh was born in Stanford

,
CA when his parents

were graduate students but WE grew up in Seoul , South Korea .
He was convinced that he was bad at math after

receiving a poor score on an elementary school .

- He dropped out of high school to pursue poetry
- in university he studied physics , and in his sixth year
he took a class by fields medal mathematician Keisuke
Hironaka


