Zara Hall Matroids + the work of June Huh consider a simple graph a triangle Graph Edge Mathematicians are interested in the following question: How many different ways can you color the vertices of the triangle given some number of colors and adhering to the rule that whenever two vertices are connected by an edge they can't be the same color? If you have a colors: 1. you have a options for the first vertex 2. A-1 options for the adjacent vertex because you can use any color save the color you used to color the first vertex 3. A-2 options for the third vertex because you can use any color save the two colors you used to color the first two vertices Total # of colorings: $q \times (q-1) \times (q-2) = q^3 - 3q^2 + 2q$ This equation is called the chromatic polynomial for the graph It has interesting properties 1. sequence is unimodal: The sequence peaks once, before that rises and falls only after for a triangle: 193-392+29 1, 3, 2 (absolute value of the sequence) Unimodal 1, 3, 2 Tpeak seavence S: 1, 2, 3, 4, 5, 4, 3, 2, 1 other examples of unimodal 2,3,5,7,9,8,7,6,5 2. The sequence is "log concave" meaning that any three consecutive numbers in the sequence follow this rule:

the product of the outside two numbers is less than
the square of the middle number
$$(1,3,2)$$
 is log concave $(1\times2 = 2\times3^2)$
 $(2,3,5)$ does not $(2\times5=10)$ (3^2)

The fact that these two properties always holds is called Read's conjecture > June Huh, the focus of the talk today proved this

consider a slightly	more complicated grap	h, a nectangle
rectangle s		
we can calculate the	chromatic polynomial	by breaking
subgraphs are all the edge cor edges) from two vertices into one	graphs you can make the original graph or	by deleting an by contractly
•		
rectange with deleted graph	contracted edge	
Chromatic polynomial of polynomial with one polynomial of the	the rectangle is equal edge deleted minus triangle	to the chromatic the chromatic
	\wedge	
		chromatic
		chromatic polynomial
rectange with deleted graph	rectangle with contracted edge	chromatic polynomial of rectangle
rectangle with deleted graph Q ⁴ -3q ³ +3q ² -q —	rectangle with contracted edge q ³ -3q ² +2q	chromatic polynomial of rectangle = q ⁴ - 4q ³ + 6q ² -3q
restange with deleted graph q ⁴ -3q ³ +3q ² -q Log concavity is not alw with chromatic polyr	rectangle with contracted edge q ³ -3q ² +2q ways preferred with addition/ nomials it is	chromatic polynomial of rectangle = q ⁴ - 4q ³ + 6q ² -3q subtraction but
rectangle with deleted graph q ⁴ -3q ³ +3q ² -q Log concavity is not alw with chromatic polyr MATROIDS: Graphs define	rectangle with contracted edge Q ³ -3q ² +2q ways preferred with addition/ nomials it is are one type of objection a more general strue	chromatic polynomial of rectangle = q ⁴ - 4q ³ + 6q ² -3q subtraction but cut that can octures called m
rectangle with deleted graph Q ⁴ -3q ³ +3q ² -q Log concavity is not alw with chromatic polyr MATROIDS: Graphs define matroids. consider for example, If more than two p	rectangle with contracted edge Q ³ -3q ² +2q ways preferred with addition/ nomials it is are one type of object a more general structure two points on a two- oints lie on a line;	chromatic polynomial of rectangle = q ⁴ - 4q ³ + 6q ² -3q subtraction but subtraction but chures called me dimensional plane of this same plane,
restangle with deleted graph Q ⁴ -3q ³ +3q ² -q Log concavity is not alw with chromatic polyr MATROIDS: Graphs define matroids. Consider for example, if more than two p you can say those Matroids are abstra	rectangle with contracted edge Q ³ -3q ² +2q ways preferred with addition/ nomials it is are one type of object a more general structure two points on a two- oints lie on a line; points are dependent.	chromatic polynomial of rectangle = q ⁴ - 4q ³ + 6q ² -3q subtraction but subtraction but dimensional plane of this same plane of this same plane
rectangle with deleted graph 9"-39" +39" -9 Log concavity is not alv with chromatic poly v MATROIDS: Graphs define matroids. Consider for example, If more than two p you can say those Matroids are abstra dependence and ind sontexts - for arm	rectangle with contracted edge Q ³ -3q ² +2q Nays preferved with addition/ nomials it is are one type of object a more general structure two points on a two- oints lie on a time; points are dependent; lie on a line; points are dependent; lie on all sorts before that capture before to vector spaces	chromatic polynomial of rectangle = q ⁴ - 4q ³ + 6q ² - 3q subtraction but subtraction but cut that can octures called me dimensional plane of this same plane, plane, notions like of different to algebraic
rectangle with deleted graph Q ⁴ -3Q ³ +3Q ² -Q Log concavity is not alw with chromatic poly, MATROIDS: Graphs define matroids. Consider for example, If more than two p you can say those Matroids are abstra dependence and ind contexts. From grave	vectangle with contracted edge Q ³ -3q ² +2q Nays preferved with addition, nomials it is are one type of object a more general structure two points on a two- oints lie on a time; points are dependent; act concepts that capture dependence in all sorts up his to vector spaces	chromatic polynomial of rectangle = q ⁴ - 4q ³ + 6q ² -3q subtraction but subtraction but cut that can octures called me dimensional plane n this same plane, n this same plane, n offerent to algebraic

we define a matroid MCG) associated with the graph G by specyfying the ground set and the independent set. A subset of sets is called <u>acrylic</u> if it contains no dat cycles let E be a finite set and let T be a family of subsets of E. Then the family T forms the independent sets of a matroid M if: 1) J J Z Ø 2) J E I and I C J then I E J 3) If I, J E I with II C I T then there is some elunent X E J I with I U Exy E I E is called the ground Set of the matroid -> Write out def of independent/acrylic sets

Theorem 4.1: let E be the set of edges of a graph and let I be the collection of all subsets of edges that are acrylic. Then M=CE, I) is a matroid	
Example: we are going to compute the matroid associated	4
1. write out all independent sets	
Sa. b Cz	
$\{a_1b\} \{a_1c\} \{b_1c\} = \bigcup_{a_1} = B_a$	
201 201 201 matroid Un,n is called the	
Boolean Algebra	
Ukin is a uniform matroid: matroid in which the independent	Γ
n= size of matroid	
has 2 or ferrer subsets is independent	
In general Ukin is a matroid with IEI= n and every subset of E with E or fewer elements is independent	
Now, let's talk about the relationship between matroids and graphs.	
First important question: Do all matroids come from graphs? More precisely, can we always find a graph G with	
MCG) = M? cThis means the independent sets of the matroid M must	
satisfying answer to this question is no Matroids are called graph	
realized and all and all and all and all and all all all all all all all all all al	K

All graphic matroids are representable crepre sentable definition: a matroid whose ground set E to a set of vectors)

RANK: Given any subset A of the ground set F of the national that are contained in A. The largest such independent subset of A is its rank Definition 2.1.2: let M= CE, J be a matroid and let A S E. The rank of A written rCAS to the size of the the largest indep endent subset of A

$$r(A) := \max_{1 \leq A} \{ |I| : I \in \mathcal{I} \}$$

compute the vanks for Bn= Un, n, the boolean algebra and U2,4 $B_n = U_{n,n}$ The rank of a bookan algebra Bn = n El, 2, 33 rank 3 Everything is SI,23 62,33 51,33 rank 2 Ely 223 J33 rank a flat Next concept comes from geometry. A flat in a matroid is subset that is rank-maximal: if you add anything to a প flat, its rank increases Definition 2.16: let E be the ground set of the matroid M. A subset FSE is a flat if r(Fv {x3}) > r(F) for any X ÉF

A set has rank 2 if it spans a line in the geometry. Among the points a,b,c and d, choosing any two (or more) except ab will span the line con- taining these four points.

Theoven G.1: Given a matroid M, let (F(M), S) be the poset where F(M) is the set of all flats of M and <u>C</u> is set inclusion. Given CL, S) a lattice, TFAE the following are equivalent 1) (L, L) is a geometric lattice catomic and rank function semimodular) <u>ī</u>5 2) (L, S) is isomorphic as a poset to (7(M), S) for some matroid M. a) Characteristic Polynomials Pt. 2 a combinatorial object is to study -> one way to get insight into its generating function

let's define the characteristic polynomial of a graded poset Oefinition 5.1.5: let P be a finite ranked poset with rk
P=n. The characteristic polynomial of P is
$\chi(P) = \chi(P;t) = \Xi \mu(\chi)tn-rkx$
<u>xep</u>
Now, we will compute the chara deristic polynomials for some of our standard example posets
we have the following characteristic polynomials
a) For $(n; \chi((n)) = t^{n-1}(t-1))$
b) for B_n : $\gamma(B_n) = (t-1)^n$
c) If n has prime factorization n=pmpm and m=z;m;
then $\chi(D_n) = t^{m-k}(t-1)^k$
For matroids:
is (Real to) the second second of the second
is generaling, es the charaderistic polynomial of the
corresponding geometric lattice
NOW, we are goild to many to charactic columnial
ewhich is not the same as the characteristic polynomial)
Theorem 6.2: Given a graph G with chromatic polynomial
matroid. Then $((G +) = f^{c} \chi(G + 1))$
where c is the number of connected components of G
EXAMPLE:
Going back to the group;
$-\frac{1}{2} - \frac{1}{2} - 1$
$((a_1 +) = t(t-1)(t-1)(t-1) = t(t-1)^3$
we know ×(B2, t) = (t-1) ³
c=1 => through the theorem c(G,t) = tx(Gm,t)
We have verified the equation for No chromatic polun
-omint of the example

(3) connect remaining edges

The Heron–Rota–Welsh unimodality conjecture ([32, 56, 64]) asserts that the coeffi- cients of the characteristic polynomial of a matroid form a log-concave sequence. This implies that the coefficients are unimodal.

A special case of the conjecture is an earlier conjecture by Read, asserting that the coefficients of the chromatic polynomial of a graph are unimodal. In 2009 June Huh used algebraic geometry to prove Read's unimodality conjecture [33] for graphs, and the more general Heron–Rota–Welsh conjecture for matroids represented over a field of characteristic 0. The case of matroids representable over a field of a non-zero characteristic and the case of general matroids remained open.

In 2010 June Huh and Eric Katz [36] found a different algebraic-geometric approach and proved the case of matroids repre- sentable over a field of an arbitrary characteristic. Finally, in 2015 the Heron–Rota–Welsh conjecture was proved in full generality by Karim Adiprasito, June Huh, and Eric Katz [1]. For this purpose it was necessary to extend theorems from algebraic geometry (primarily the Hodge–Riemann relations and the hard Lefschetz theorem) to cases well beyond the scope of algebraic geometry. Huh and his coauthors developed an entirely novel theory of great interest and importance.

9) June Huh's Life story

- 1) Childhood: Huh was born in stanford, cA when his parents were graduate students but to grew up in seoul, south Korea. He was convinced that he was bad at north after receiving a poor score on an elementary school.
 - -He dropped out of high schoo) to pursue poetry -In university he studied physics, and in his sixth year he took a class by fields medal mathematician Heisuke Hironaka

Nine years later, at the age of 34, Huh is at the pinnacle of the math world. He is best known for his proof, with the mathematicians Eric Katz and Karim Adiprasito, of a long-standing problem called the Rota conjecture.

The mathematician Gian-Carlo Rota developed a number of different conjectures that bear his name. Even more remarkable than the proof itself is the manner in which Huh and his collaborators achieved it — by finding a way to reinterpret ideas from one area of mathematics in another where they didn't seem to belong. This past spring IAS offered Huh a long-term fellowship, a position that has been extended to only three young mathematicians before. Two of them (Vladimir Voevodsky and Ngô Bảo Châu) went on to win the Fields Medal, the highest honor in mathematics.

That Huh would achieve this status after starting mathematics so late is almost as improbable as if he had picked up a tennis racket at 18 and won Wimbledon at 20. It's the kind of out-of-nowhere journey that simply doesn't happen in mathematics today, where it usually takes years of specialized training even to be in a position to make new discoveries. Yet it would be a mistake to see Huh's breakthroughs as having come in spite of his unorthodox beginning. In many ways they're a product of his unique history — a direct result of his chance encounter, in his last year of college, with a legendary mathematician who somehow recognized a gift in Huh that Huh had never perceived himself.