Matroids + the work of June Huh
consider a simple graph a triangle

Mathematicians are interested in the following question:
How many different ways can you color the vertices of the triangle given some number of colors and to the rule that whenever two vertices are connected edge they cant be the same color?
If you have a colors

1. you have a options for the first vertex
2. 9-1 options for the adjacent vertex because you can use any
color save the color you used to color the first vertex
3. color save the color you used to color the first vertex any color save the two colors you used to color the first two vertices
Total \# of colorings: $q \times(q-1) \times(q-2)=q^{3}-3 q^{2}+2 q$
This equation is called the chromatic polynomial for the graph
It has interesting properties
4. Sequence is unimodal: The sequence peaks once, before that rises and falls only after
for a triangle: $1 q^{3}-3 q^{2}+2 q$
$1,3,2$ (absolute value of the sequence)
Unimodal $1,3,2$
other examples of unimodal sequences:

$$
\begin{aligned}
& 1,2,3,4,5,4,3,2,1 \\
& 2,3,5,7,9,8,7,6,5
\end{aligned}
$$

2. The sequence is "log concave" meaning that any three consecutive numbers in the sequence follow this rule: the product of the outside two numbers is less than the square of the middle number
$(1,3,2)$ is log concave $\left(1 \times 2=2<3^{2}\right)$
$(2,3,5)$ does not $\left(2 \times 5=10>3^{2}\right)$
The fact that there two properties always holds is called Read's conjecture
\rightarrow June Huh, the focus of the talk today proved this
consider a slightly more complicated graph, a rectangle
rectangles
we can calculate the chromatic polynomial by breaking up a graph into subgraphs
subgraphs are all the graphs you can make by deleting an edge cor edges) from the original graph or by contract
two vertices into one

rectangle with deleted graph

rectangle with
contracted edge
chromatic polynomial of the rectangle is equal to the chromatic poly nominal with one edge deleted minus the chromatic polynomial of the triangle

rectangle with deleted graph

$$
q^{4}-3 q^{3}+3 q^{2}-q
$$

rectangle with contracted edge
chromatic polynomial of rectangle

$$
=q^{4}-4 q^{3}+6 q^{2}-3 q
$$

Log concavity is not always preserved with addition/subtraction but with chromatic polynomials it is
MATROIDS: Graphs are one type of object that can matroids. define a move general structures called consider for example, two points on a two-dimensional plane If more than two points lie on a line in this same plane, you an say those points are dependent. matroids are abstract concepts that capture notions like dependence and independence in all sorts of different contexts- from graphs to vector spaces to algebraic
fields
Matroids associated with graphs:
we define a matroid $M(G)$ associated with the graph G by specyfying the ground set and the indepen dent set.
A subset of sets is called acrylic if it contains no crest cycles
let E be a finite set and let $I_{\text {be }}$ be family of subsets of E. Then the family I forms the independent sets of a matro id M if:

1) $\pi \neq \varnothing$ 2) $J \in I$ and $I \subseteq J$ then $\mid \in I$
2) If $\mid, J \in I$ with $|I|<|J|$ then there is some element $x \in J-1$ with $1 \cup\{x\} \in I$
E is called the ground set of the matroid
\rightarrow Write out def of independent/acrylic sets

Theorem 4.1: Let E be the set of edges of a graph and let I be the collection of all subsets of edges that are acrylic. Then $M=(E, I)$ is a matroid
Example: we are going to compute the matroid associated with the graph

$$
0-0-b-c
$$

1. write out all independent sets

$U_{K, h}$ is a uniform matroid: matroid in which the independent sets are exactly the sets containing at most r elements, $n=$ sizer some fixed integer
$k=2$ refers to the fact that every subset of E that has 2 or fewer subsets is independent
In general $U_{k i n}$ is a matroid with $|E|=n$ and every subset of E with k or fewer elements is independent
Now, lets talk about the relationship between matroids and graphs.
First important question: DO all matroids come from graphs? More precisely, can we always find a graph G with $M(G)=M$?
(This means the independent sets of the matroid M must precisely match the cycle - free subsets of edges of G. The satisfying answer to this question is No
Matroids that do arise as cycle matroids are called graphic
Example 1.19: The uniform matroid $v_{2,4}$ in Figure 1.25 is not graphic a $c d$
All graphic matroids are representable
crepresentable definition: a matrold whose ground set E is a set of vectors)
RA NK: Given any subset A of the ground set F of the mattoid that are we alan look at the size of all independent sets of A is its rank in A. The largest such independent subset
Definition 2.1 .2 : let $M=C E, \mathcal{I})$ be a matroid and let
A E E. The rank of A, written $r(A)$ is the size of the the largest indep indent subset of A

$$
r(A):=\max _{1 \subseteq A}\{|I|: I \in \mathcal{I}\}
$$

compute the ranks for $B_{n}=U_{n, n}$, the boolean algebra and $U_{2,4}$ $B_{n}=U_{n, n}$
The rank of a boolean algebra $B_{n}=n$

Everything is a flat

Next concept comes from geometry. Aflat in a matroid is a subset that is rank -maximal: if you add any thin gu to a flat, its rank increases new

Definition 2.16 : let E be the ground set of the matroid M. A suloset $F \in E$ is a flat if $r(F \cup\{x\})>r(F)$ for any

A set has rank 2 if it spans a line in the geometry. Among the points a, b, c and d, choosing any two (or more) except ab will span the line con- training these four points.

Theorem 6.1: Given a matroid M_{1} let $\left(F(M)_{1} S\right.$) be the poet where F(M) is the get of ail flints of M and Pos is set incwsion. Given $C L, S$) a lattice, T\&AE

1) (L, \leq) is a geometric lattice catomic and rank function is semimo dular)
2) $\left(L_{1} \leq\right.$) is isomorphic as a poses to $(\mathcal{F}(M), C$) for some matroid M.
d) Characteristic Polynomials P4. 2
\rightarrow one way to get insight into a combinatorial object is to study its generating function
let's define the characteristic polynomial of a graded post Definition 5.1.5: let p be a finite ranked poses with rF $p=n$. The characteristic polynomial of p is

$$
x(p)=x(P ; t)=\sum_{x \in p} \mu(x) t^{n-r k x}
$$

th this uses the one-variable form of the mobius function Now, we will compute the characteristic polynomials for some of our standard example posets
we have the following characteristic polynomials
a) For C_{n} : $x\left(C_{n}\right)=t^{n-1}(t-1)$
b) For $B_{n}: \chi\left(B_{n}\right)=(t-1)^{n}$
c) If n has prime factorization $n=p_{1} m_{1} \ldots p_{k} m_{k}$ and $m=\varepsilon_{i} m_{i}$ then $x\left(D_{n}\right)=t^{m-k}(t-1)^{k}$
For matroids:
The characteristic polynomial $x(M, t)$ of a matroid M is $x(\nsim(M), t)$ the characteristic polynomial of the corresponding geometric lattice

Now, we are going to move to chromatic polynomial
which is not Given same as the charactenstic polynomide)
Theorem 6.2: Given a graph G with chromatic polynomine matroid. Then, $C(G, t)=t^{c} x(G m, t)$
where c is the number of connected component of G EXAMPLE:
Going back to the groupi

$$
\begin{aligned}
& c(G, t)=t(t-1)(t-1)(t-1)=t(t-1)^{3}
\end{aligned}
$$

we know $x\left(B_{3}, t\right)=(t-1)^{3}$
$c=1 \Rightarrow$ through the theorem $c(G, t)=t^{c} \chi(G \mu, t)$
We have verified the equation for the chromatic pOlyn - omin of the example

In general to go from a matroid to a geometric lattice:
(1) Draw entire Bookan alg B_{n}
(2) Erase all subsets which are not flats
(3) connect remaining edges

The Heron-Rota-Welsh unimodality conjecture ([32, $56,64]$) asserts that the coeffi- cients of the characteristic polynomial of a matroid form a logconcave sequence. This implies that the coefficients are unimodal.

A special case of the conjecture is an earlier conjecture by Read, asserting that the coefficients of the chromatic polynomial of a graph are unimodal. In 2009 June Huh used algebraic geometry to prove Read's unimodality conjecture [33] for graphs, and the more general Heron-Rota-Welsh conjecture for matroids represented over a field of characteristic 0 . The case of matroids representable over a field of a non-zero characteristic and the case of general matroids remained open.

In 2010 June Huh and Eric Katz [36] found a different algebraic-geometric approach and proved the case of matroids repre- sentable over a field of an arbitrary characteristic. Finally, in 2015 the Heron-Rota-Welsh conjecture was proved in full generality by Karim Adiprasito, June Huh, and Eric Katz [1]. For this purpose it was necessary to extend theorems from algebraic geometry (primarily the Hodge-Riemann relations and the hard Lefschetz theorem) to cases well beyond the scope of algebraic geometry. Huh and his coauthors developed an entirely novel theory of great interest and importance.

g) June Huh's Life story

1) Childhood: Huh was born in stanford, CA when his parents
were graduate students but grew, in seoul, south korea.
He was convinced that he was bad at moth after
receiving a poon score on an elementary school.

- He dropped out of high school to pursue poetry
- in university he studied physics and in phis sixth year
he took a class by fields medal mathematician Heisule Hironaka

Nine years later, at the age of 34 , Huh is at the pinnacle of the math world. He is best known for his proof, with the mathematicians Eric Katz and Karim Adiprasito, of a long-standing problem called the Rota conjecture.

The mathematician Gian-Carlo Rota developed a number of different conjectures that bear his name.
Even more remarkable than the proof itself is the manner in which Huh and his collaborators achieved it - by finding a way to reinterpret ideas from one area of mathematics in another where they didn't seem to belong. This past spring IAS offered Huh a long-term fellowship, a position that has been extended to only three young mathematicians before. Two of them (Vladimir Voevodsky and Ngô Bảo Châu) went on to win the Fields Medal, the highest honor in mathematics.

That Huh would achieve this status after starting mathematics so late is almost as improbable as if he had picked up a tennis racket at 18 and won Wimbledon at 20. It's the kind of out-of-nowhere journey that simply doesn't happen in mathematics today, where it usually takes years of specialized training even to be in a position to make new discoveries. Yet it would be a mistake to see Huh's breakthroughs as having come in spite of his unorthodox beginning. In many ways they're a product of his unique history - a direct result of his chance encounter, in his last year of college, with a legendary mathematician who somehow recognized a gift in Huh that Huh had never perceived himself.

