Notes on the Robinson-Schensted-Knuth (RSK) Algorithm and Cauchy's Formula

Alexander Lindenbaum

March 30, 2023

1 The Robinson-Schensted (RS) Algorithm

Recall the RS Algorithm which, given a permuation $\pi \in S_{n}$, outputs a pair of standard Young tableaux (SYT) P and $Q . P$ and Q both have shape λ, where λ is some partition of n. Write out π as a $2 \times n$ matrix:

$$
\pi=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\pi(1) & \pi(2) & \cdots & \pi(n)
\end{array}\right)
$$

RS begins with two empty SYTs, denoted P_{0} and Q_{0}. The algorithm inserts the bottom row into P_{0} left-to-right, and the final output is P. As $\pi(i)$ is inserted into P_{i-1} to get P_{i}, the number i is inserted into Q_{i-1} to get Q_{i}. These methods of insertion are different between P and Q.

- Insertion into P_{i-1}. The number $k=\pi(i)$ is inserted using a slide rule. Beginning at the first row, we look for an existing entry which has value greater than k. If no such entry exists, then k is appended to that row and we are done. Otherwise, suppose we find an entry $j>k$. Then we replace the entry j with value k, and "slide" j into the next row. This process repeats until an element is appended to some row. Note that if the row is empty, the input is automatically added to create a new row with length one.
- Insertion into Q_{i-1}. We note the last position in which an element was placed in P_{i-1} to get to P_{i}. We place i in that position in Q_{i-1} to get Q_{i}.

Example. Let

$$
\pi=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 2 & 3 & 1
\end{array}\right)
$$

P_{0} and P_{1} are both empty tableaux. We insert 4 into P_{0} and 1 into Q_{0}, then continue.

$$
\begin{aligned}
& P_{1}=4 \\
& Q_{1}=1 \\
& P_{2}=\begin{array}{|}
\hline 2 \\
\hline
\end{array} \\
& Q_{2}=\begin{array}{|c|}
\hline 1 \\
\hline 2 \\
\hline
\end{array} \\
& P_{3}=\begin{array}{|l|l|}
\hline 2 & 3 \\
\hline 4 & \\
\hline
\end{array} \\
& Q_{3}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline
\end{array} \\
& P_{4}= \\
& Q_{4}=
\end{aligned}
$$

Remarks: First, for P and Q each step preserves the fact that rows are increasing left-to-right, and increasing top-to-bottom. The shape of P and Q are always identical at each step. As a result, RS always outputs a pair of SYT with the same shape. Second, this algorithm is reversible. Without going into too much detail, you can imagine using entries in Q to find a position in P, and "slide backwards" to pull out an element which would have been placed at that time step. This builds up a permutation last-to-first entry. Thus,

Theorem The RS algorithm is a bijection between permutations over n elements and pairs of SYT with the same shape $\lambda \vdash n$.

Corollary $\sum_{\lambda \vdash n}\left(f^{\lambda}\right)^{2}=n$!, where f^{λ} denotes the number of SYT of shape λ.

Pf. Count both sides of the bijection.

But π did not have to be a permutation in order for RS to produce something meaningful. Perhaps we can loosen the structure of π so that the output of this procedure is a pair of semistandard Young tableaux? We can also generalize the input, from permutations to matrices. Every permutation is encoded by some permutation matrix. This is the motivation behind RSK.

2 Generalized Permutations

Definition. Let $A=\left(a_{i j}\right)_{i, j \geq 1}$ be an \mathbb{N}-matrix with finite support, i.e. there are only a finite number of non-zero entries in A. The generalized permutation associated with A is a $2 \times n$ matrix w_{A},

$$
w_{A}=\left(\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{n} \\
j_{1} & j_{2} & \cdots & j_{n}
\end{array}\right)
$$

such that

1. $i_{1} \leq i_{2} \leq \cdots \leq i_{n}$ (the top row is weakly increasing),
2. If $i_{r}=i_{s}$ then $j_{r}=j_{s}$ (among all j 's with the same corresponding i 's, they are weakly increasing), and
3. for each pair (i, j), there are exactly $a_{i j}$ occurences of the column $\left[\begin{array}{l}i \\ j\end{array}\right]$ in w_{A}.

Observe that since A is assumed to have finite support, w_{A} must always be a finitely sized matrix. Furthermore, a regular permutation is a particular type of generalized permutation, where A is a permutation matrix.

Example Consider the \mathbb{N}-matrix

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & \cdots \\
0 & 2 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

A has finite support, so we may consider it as just the 3×3 matrix where there are non-zero entries. The generalized permutation for A is

$$
w_{a}=\left(\begin{array}{lllllll}
1 & 1 & 1 & 2 & 2 & 3 & 3 \\
1 & 3 & 3 & 2 & 2 & 1 & 2
\end{array}\right) .
$$

To see that this is true, note that $(2,2)$ occurs twice in w_{A}, and $a_{22}=2$. Check this for each entry of A.

3 The Robinson-Schensted-Knuth (RSK) Algorithm

The RSK algorithm is identical to RS, except that we execute the procedure on input a generalized permutation.

Example Let's simulate RSK on w_{A} from the last example. We start with $P_{0}=\emptyset, Q_{0}=\emptyset$.

$$
\begin{aligned}
& P_{1}=1 \\
& P_{2}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline
\end{array} \\
& Q_{1}=1 \\
& P_{3}=\begin{array}{|l|l|l|}
\hline 1 & 3 & 3 \\
\hline
\end{array} \\
& P_{4}=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 3 & & \\
\hline & & \\
\hline
\end{array} \\
& Q_{2}=\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline
\end{array} \\
& Q_{3}=\begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline
\end{array} \\
& Q_{4}=\begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 2 & & \\
\hline
\end{array} \\
& P_{5}=\begin{array}{|l|l|l|}
\hline 1 & 2 & 2 \\
\hline 3 & 3 & \\
\hline
\end{array} \\
& Q_{5}=\begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 2 & 2 & \\
\hline
\end{array} \\
& P_{6}=\begin{array}{|l|l|l|}
\hline 1 & 1 & 2 \\
\hline 2 & 3 & \\
\cline { 1 - 2 } 3 & & \\
\cline { 1 - 1 } & & \\
& & \\
& &
\end{array} \\
& Q_{6}= \\
& P_{7}= \\
& Q_{7}=\begin{array}{|l|l|l|l|}
\hline 1 & 1 & 1 & 3 \\
\hline 2 & 2 & & \\
\cline { 1 - 2 } 3 & & & \\
& & & \\
& & & \\
\hline
\end{array}
\end{aligned}
$$

The Main RSK Theorem

1. RSK is a bijection between \mathbb{N}-matrices with finite support and pairs of SSYT of the same shape.
2. j occurs in P exactly $\sum_{i} a_{i j}$ times, and i occurs in Q exactly $\sum_{j} a_{i j}$ times. Pf sketch.

- Part 1: prove that each gen. perm. maps to a pair of SSYT with the same shape.
- Part 2: show that you can reverse RSK. This is not as easy as RS, but it can be done. The dilemma is that in Q, we might insert the same value i more than once, and so when going backwards we can't tell which place to start at before sliding. The key here is to observe that equal elements are inserted left-to-right in Q. Thus, we can relabel entries in Q to $1, \ldots, n$ and reverse in the same way as RS.

4 Cauchy's Formula

Just like for the RS correspondence, there is an equivalence arising from the RSK bijection.

Theorem (Cauchy's Formula)

$$
\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y)=\prod_{j, k}^{\infty} \frac{1}{1-x_{j} x_{k}}
$$

where the sum is over all partitions λ and s_{λ} is the Schur polynomial

$$
s_{\lambda}(x)=\sum_{T \in \operatorname{SSYT}(\lambda)} x^{T}
$$

To prove this, we first associate with each generalized permutation a polynomial over variables $x=x_{1}, x_{2}, \ldots$ and $y=y_{1}, y_{2}, \ldots$. Then we show that both sides are equal to the generating function for generalized permutations.

$$
\begin{aligned}
\text { Let } \pi=\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n} \\
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right) \text { be a generalized permutation. Let } \\
\left.\quad \begin{array}{rl}
\operatorname{topwt}(\pi) & =x_{a_{1}} x_{a_{2}} \cdots x_{a_{n}} \\
& \operatorname{bottomwt}(\pi)
\end{array}\right)=y_{b_{1}} y_{b_{2}} \cdots y_{b_{n}} .
\end{aligned}
$$

Lemma $1 \quad \sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y)=\sum_{\pi} \operatorname{topwt}(\pi) \operatorname{bottomwt}(\pi)$, where the sum is over all generalized permutations π.

Pf. Using the definition of Schur polynomials,

$$
\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y)=\sum_{\lambda}\left(\sum_{Q \in \operatorname{SSYT}(\lambda)} x^{Q}\right)\left(\sum_{P \in \operatorname{SSYT}(\lambda)} y^{P}\right)=\sum_{\lambda} \sum_{P, Q \in \operatorname{SSYT}(\lambda)} x^{Q} y^{P}
$$

Let α and β be contents for SSYT of the same shape. The coefficient of $x^{\alpha} y^{\beta}$ above is the number of pairs (P, Q) for which P and Q are SSYT with shape λ and the content of Q and P is α and β, resp.

Now observe that if $\pi \xrightarrow{\mathrm{RSK}}(P, Q)$ then $\operatorname{topwt}(\pi)=x^{Q}$ and $\operatorname{bottomwt}(\pi)=x^{P}$ exactly. The coefficient of $x^{\alpha} y^{\beta}$ is the number of generalized permutations π where $\operatorname{topwt}(\pi)=x^{Q}$, bottomwt $(\pi)=x^{P}$. By the bijectivity of RSK, the coefficients for $x^{\alpha} y^{\beta}$ are equal and so we are done.

Lemma $2 \quad \sum_{\pi} \operatorname{topwt}(\pi) \operatorname{bottomwt}(\pi)=\prod_{j, k}^{\infty}\left(1-x_{j} y_{k}\right)^{-1}$.
Pf. Every generalized permutation can be constructed by choosing any number of each column $\left[\begin{array}{l}j \\ k\end{array}\right]$ and then arranging them in order such that the three
properties are preserved. For example, we can choose 3 of $\left[\begin{array}{l}1 \\ 1\end{array}\right]$, 2 of $\left[\begin{array}{l}2 \\ 1\end{array}\right]$, and 1 of $\left[\begin{array}{l}2 \\ 2\end{array}\right]$ to get the generalized permutation

$$
\left(\begin{array}{llllll}
1 & 1 & 1 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 & 1 & 2
\end{array}\right) .
$$

In fact, once we choose the columns then there is only one unique way to order them and obtain a generalized permutation. First, order the columns by nondecreasing top row. Then for each fixed top row value, order the columns by non-decreasing bottom row.

In the example above, the expression $\operatorname{topwt}(\pi)$ bottomwt (π) is equal to $\left(x_{1} y_{1}\right)^{3}$. $\left(x_{2} y_{1}\right)^{2} \cdot\left(x_{2} y_{2}\right)^{1}$. If we consider this expression inside the sum over all generalized permutations, we "chose" the monomials $\left(x_{1} y_{1}\right)^{3},\left(x_{2} y_{1}\right)^{2},\left(x_{2}, y_{2}\right)^{1}$ (and $\left(x_{j} y_{k}\right)^{0}$ for all other columns) and multiplied them together. The sum is thus the sum over all ways to choose these monomials and take their product. Using the series $\sum_{n=0}^{\infty} x^{n}=(1-x)^{-1}$, we get

$$
\begin{aligned}
\sum_{\pi} \operatorname{topwt}(\pi) \operatorname{bottomwt}(\pi) & =\prod_{j, k}\left(\left(x_{j} y_{k}\right)^{0}+\left(x_{j} y_{k}\right)^{1}+\left(x_{j} y_{k}\right)^{2}+\cdots\right) \\
& =\prod_{j, k}^{\infty} \frac{1}{1-x_{j} y_{k}} .
\end{aligned}
$$

Cauchy's formula follows immediately.

5 RSK Symmetry and Other Corollaries

Theorem (No proof.) Let A be a \mathbb{N}-matrix with finite support. If $A \xrightarrow{\text { RSK }}$ (P, Q), then $A^{\top} \xrightarrow{\mathrm{RSK}}(Q, P)$.

Corollary $\quad A$ is symmetric iff $P=Q$. Pf. If $P=Q$ then both A and A^{\top} are mapped to (P, P). By bijectivity of RSK, this must mean that $A=A^{\top}$. On the other hand, if $A=A^{\top}$ then they must map to the same pair of tableaux. Then $P=Q$.

Corollary Let $A=A^{\top}$ and $A \xrightarrow{\mathrm{RSK}}(P, P)$. The map $A \mapsto P$ is a bijection between symmetric \mathbb{N}-matrixes and SSYT, such that the sequence of sum of the rows of A is the content of P.

Corollary

$$
\sum_{\lambda \vdash n} f^{\lambda}=\#\left\{w \in S_{n} \mid w^{2}=\mathrm{id}\right\}
$$

Pf. Let $w \in S_{n}$ and $w \xrightarrow{\text { RSK }}(P, Q)$, where P and Q are SYT of shape $\lambda \vdash n$. We know that w is the generalized permutation associated with a permutation matrix P_{w}. It is a fact that for all permutation matrices, the transpose of the matrix is its inverse. If w is an involution, then P_{w} is its own inverse. Then $P_{w}^{\top}=P_{w}$. Vice versa, if $P_{w}^{\top}=P_{w}$ then w is an involution. Each permutation matrix when passed through RS leads to a pair of SYT. By bijectivity then, the number of involutions in S_{n} is exactly the number of pairs of SYT (P, P) of shape $\lambda \vdash n$.

