Notes on the Robinson-Schensted-Knuth (RSK) Algorithm and Cauchy's Formula

Alexander Lindenbaum

March 30, 2023

1 The Robinson-Schensted (RS) Algorithm

Recall the RS Algorithm which, given a permutaion $\pi \in S_n$, outputs a pair of standard Young tableaux (SYT) P and Q. P and Q both have shape λ , where λ is some partition of n. Write out π as a $2 \times n$ matrix:

$$\pi = \begin{pmatrix} 1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{pmatrix}$$

RS begins with two empty SYTs, denoted P_0 and Q_0 . The algorithm inserts the bottom row into P_0 left-to-right, and the final output is P. As $\pi(i)$ is inserted into P_{i-1} to get P_i , the number i is inserted into Q_{i-1} to get Q_i . These methods of insertion are different between P and Q.

- Insertion into P_{i-1} . The number $k = \pi(i)$ is inserted using a slide rule. Beginning at the first row, we look for an existing entry which has value greater than k. If no such entry exists, then k is appended to that row and we are done. Otherwise, suppose we find an entry j > k. Then we replace the entry j with value k, and "slide" j into the next row. This process repeats until an element is appended to some row. Note that if the row is empty, the input is automatically added to create a new row with length one.
- Insertion into Q_{i-1} . We note the last position in which an element was placed in P_{i-1} to get to P_i . We place *i* in that position in Q_{i-1} to get Q_i .

Example. Let

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix}$$

 ${\cal P}_0$ and ${\cal P}_1$ are both empty tableaux. We insert 4 into ${\cal P}_0$ and 1 into ${\cal Q}_0,$ then continue.

Remarks: First, for P and Q each step preserves the fact that rows are increasing left-to-right, and increasing top-to-bottom. The shape of P and Q are always identical at each step. As a result, RS always outputs a pair of SYT with the same shape. Second, this algorithm is reversible. Without going into too much detail, you can imagine using entries in Q to find a position in P, and "slide backwards" to pull out an element which would have been placed at that time step. This builds up a permutation last-to-first entry. Thus,

Theorem The RS algorithm is a bijection between permutations over n elements and pairs of SYT with the same shape $\lambda \vdash n$.

Corollary $\sum_{\lambda \vdash n} (f^{\lambda})^2 = n!$, where f^{λ} denotes the number of SYT of shape λ .

Pf. Count both sides of the bijection.

But π did not have to be a permutation in order for RS to produce something meaningful. Perhaps we can loosen the structure of π so that the output of this procedure is a pair of semistandard Young tableaux? We can also generalize the input, from permutations to matrices. Every permutation is encoded by some permutation matrix. This is the motivation behind RSK.

2 Generalized Permutations

Definition. Let $A = (a_{ij})_{i,j\geq 1}$ be an N-matrix with finite support, i.e. there are only a finite number of non-zero entries in A. The generalized permutation associated with A is a $2 \times n$ matrix w_A ,

$$w_A = \begin{pmatrix} i_1 & i_2 & \cdots & i_n \\ j_1 & j_2 & \cdots & j_n \end{pmatrix},$$

such that

- 1. $i_1 \leq i_2 \leq \cdots \leq i_n$ (the top row is weakly increasing),
- 2. If $i_r = i_s$ then $j_r = j_s$ (among all j's with the same corresponding i's, they are weakly increasing), and
- 3. for each pair (i, j), there are exactly a_{ij} occurences of the column $\begin{bmatrix} i \\ j \end{bmatrix}$ in w_A .

Observe that since A is assumed to have finite support, w_A must always be a finitely sized matrix. Furthermore, a regular permutation is a particular type of generalized permutation, where A is a permutation matrix.

Example Consider the \mathbb{N} -matrix

	[1	0	2	0	
A =	0	2	0	0	• • •
	1	1	0	0	
	0	0	0	0	
	:	:	:	:	
	·	•	•	•	

A has finite support, so we may consider it as just the 3×3 matrix where there are non-zero entries. The generalized permutation for A is

$$w_a = \begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 3 & 3 \\ 1 & 3 & 3 & 2 & 2 & 1 & 2 \end{pmatrix}$$

To see that this is true, note that (2, 2) occurs twice in w_A , and $a_{22} = 2$. Check this for each entry of A.

3 The Robinson-Schensted-Knuth (RSK) Algorithm

The RSK algorithm is identical to RS, except that we execute the procedure on input a generalized permutation.

Example Let's simulate RSK on w_A from the last example. We start with $P_0 = \emptyset$, $Q_0 = \emptyset$.

The Main RSK Theorem

1. RSK is a bijection between N-matrices with finite support and pairs of SSYT of the same shape.

2. *j* occurs in *P* exactly $\sum_{i} a_{ij}$ times, and *i* occurs in *Q* exactly $\sum_{j} a_{ij}$ times.

Pf sketch.

- Part 1: prove that each gen. perm. maps to a pair of SSYT with the same shape.
- Part 2: show that you can reverse RSK. This is not as easy as RS, but it can be done. The dilemma is that in Q, we might insert the same value i more than once, and so when going backwards we can't tell which place to start at before sliding. The key here is to observe that equal elements are inserted left-to-right in Q. Thus, we can relabel entries in Q to $1, \ldots, n$ and reverse in the same way as RS.

4 Cauchy's Formula

Just like for the RS correspondence, there is an equivalence arising from the RSK bijection.

Theorem (Cauchy's Formula)

$$\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y) = \prod_{j,k}^{\infty} \frac{1}{1 - x_j x_k},$$

where the sum is over all partitions λ and s_{λ} is the Schur polynomial

$$s_{\lambda}(x) = \sum_{T \in \text{SSYT}(\lambda)} x^{T}.$$

To prove this, we first associate with each generalized permutation a polynomial over variables $x = x_1, x_2, \ldots$ and $y = y_1, y_2, \ldots$ Then we show that both sides are equal to the generating function for generalized permutations.

Let
$$\pi = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{pmatrix}$$
 be a generalized permutation. Let
 $\operatorname{topwt}(\pi) = x_{a_1} x_{a_2} \cdots x_{a_n},$
 $\operatorname{bottomwt}(\pi) = y_{b_1} y_{b_2} \cdots y_{b_n}.$

Lemma 1 $\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y) = \sum_{\pi} \text{topwt}(\pi) \text{bottomwt}(\pi)$, where the sum is over all generalized permutations π .

Pf. Using the definition of Schur polynomials,

$$\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y) = \sum_{\lambda} \Big(\sum_{Q \in \text{SSYT}(\lambda)} x^Q \Big) \Big(\sum_{P \in \text{SSYT}(\lambda)} y^P \Big) = \sum_{\lambda} \sum_{P,Q \in \text{SSYT}(\lambda)} x^Q y^P.$$

Let α and β be contents for SSYT of the same shape. The coefficient of $x^{\alpha}y^{\beta}$ above is the number of pairs (P, Q) for which P and Q are SSYT with shape λ and the content of Q and P is α and β , resp.

Now observe that if $\pi \xrightarrow{\text{RSK}} (P, Q)$ then $\text{topwt}(\pi) = x^Q$ and $\text{bottomwt}(\pi) = x^P$ exactly. The coefficient of $x^{\alpha}y^{\beta}$ is the number of generalized permutations π where $\text{topwt}(\pi) = x^Q$, $\text{bottomwt}(\pi) = x^P$. By the bijectivity of RSK, the coefficients for $x^{\alpha}y^{\beta}$ are equal and so we are done.

Lemma 2 $\sum_{\pi} \operatorname{topwt}(\pi) \operatorname{bottomwt}(\pi) = \prod_{j,k}^{\infty} (1 - x_j y_k)^{-1}.$

Pf. Every generalized permutation can be constructed by choosing any number of each column $\begin{bmatrix} j \\ k \end{bmatrix}$ and then arranging them in order such that the three

properties are preserved. For example, we can choose 3 of $\begin{bmatrix} 1\\1 \end{bmatrix}$, 2 of $\begin{bmatrix} 2\\1 \end{bmatrix}$, and 1 of $\begin{bmatrix} 2\\2 \end{bmatrix}$ to get the generalized permutation $\begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 2\\ 1 & 1 & 1 & 1 & 2 \end{pmatrix}.$

In fact, once we choose the columns then there is only one unique way to order them and obtain a generalized permutation. First, order the columns by nondecreasing top row. Then for each fixed top row value, order the columns by non-decreasing bottom row.

In the example above, the expression topwt(π) bottomwt(π) is equal to $(x_1y_1)^3 \cdot (x_2y_1)^2 \cdot (x_2y_2)^1$. If we consider this expression inside the sum over all generalized permutations, we "chose" the monomials $(x_1y_1)^3$, $(x_2y_1)^2$, $(x_2, y_2)^1$ (and $(x_jy_k)^0$ for all other columns) and multiplied them together. The sum is thus the sum over all ways to choose these monomials and take their product. Using the series $\sum_{n=0}^{\infty} x^n = (1-x)^{-1}$, we get

$$\sum_{\pi} \text{topwt}(\pi) \text{bottomwt}(\pi) = \prod_{j,k} ((x_j y_k)^0 + (x_j y_k)^1 + (x_j y_k)^2 + \cdots)$$
$$= \prod_{j,k}^{\infty} \frac{1}{1 - x_j y_k}.$$

Cauchy's formula follows immediately.

5 RSK Symmetry and Other Corollaries

Theorem (No proof.) Let A be a N-matrix with finite support. If $A \xrightarrow{\text{RSK}} (P, Q)$, then $A^{\top} \xrightarrow{\text{RSK}} (Q, P)$.

Corollary A is symmetric iff P = Q. Pf. If P = Q then both A and A^{\top} are mapped to (P, P). By bijectivity of RSK, this must mean that $A = A^{\top}$. On the other hand, if $A = A^{\top}$ then they must map to the same pair of tableaux. Then P = Q.

Corollary Let $A = A^{\top}$ and $A \xrightarrow{\text{RSK}} (P, P)$. The map $A \mapsto P$ is a bijection between symmetric N-matrixes and SSYT, such that the sequence of sum of the rows of A is the content of P.

Corollary

$$\sum_{\lambda \vdash n} f^{\lambda} = \#\{ w \in S_n \mid w^2 = \mathrm{id} \}.$$

Pf. Let $w \in S_n$ and $w \xrightarrow{\text{RSK}} (P, Q)$, where *P* and *Q* are SYT of shape $\lambda \vdash n$. We know that *w* is the generalized permutation associated with a permutation matrix P_w . It is a fact that for all permutation matrices, the transpose of the matrix is its inverse. If *w* is an involution, then P_w is its own inverse. Then $P_w^{\top} = P_w$. Vice versa, if $P_w^{\top} = P_w$ then *w* is an involution. Each permutation matrix when passed through RS leads to a pair of SYT. By bijectivity then, the number of involutions in S_n is exactly the number of pairs of SYT (P, P) of shape $\lambda \vdash n$. □