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1 The Robinson-Schensted (RS) Algorithm

Recall the RS Algorithm which, given a permuation π ∈ Sn, outputs a pair of
standard Young tableaux (SYT) P and Q. P and Q both have shape λ, where
λ is some partition of n. Write out π as a 2× n matrix:

π =

(
1 2 · · · n

π(1) π(2) · · · π(n)

)
RS begins with two empty SYTs, denoted P0 and Q0. The algorithm inserts the
bottom row into P0 left-to-right, and the final output is P . As π(i) is inserted
into Pi−1 to get Pi, the number i is inserted into Qi−1 to get Qi. These methods
of insertion are different between P and Q.

• Insertion into Pi−1. The number k = π(i) is inserted using a slide rule.
Beginning at the first row, we look for an existing entry which has value
greater than k. If no such entry exists, then k is appended to that row
and we are done. Otherwise, suppose we find an entry j > k. Then we
replace the entry j with value k, and ”slide” j into the next row. This
process repeats until an element is appended to some row. Note that if
the row is empty, the input is automatically added to create a new row
with length one.

• Insertion into Qi−1. We note the last position in which an element was
placed in Pi−1 to get to Pi. We place i in that position in Qi−1 to get Qi.

Example. Let

π =

(
1 2 3 4
4 2 3 1

)
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P0 and P1 are both empty tableaux. We insert 4 into P0 and 1 into Q0, then
continue.

P1 =
4 Q1 = 1

P2 =
2

4
Q2 =

1

2

P3 = 2 3

4
Q3 = 1 3

2

P4 = 1 3

2

4

Q4 = 1 3

2

4

Remarks: First, for P and Q each step preserves the fact that rows are in-
creasing left-to-right, and increasing top-to-bottom. The shape of P and Q are
always identical at each step. As a result, RS always outputs a pair of SYT
with the same shape. Second, this algorithm is reversible. Without going into
too much detail, you can imagine using entries in Q to find a position in P , and
”slide backwards” to pull out an element which would have been placed at that
time step. This builds up a permutation last-to-first entry. Thus,

Theorem The RS algorithm is a bijection between permutations over n ele-
ments and pairs of SYT with the same shape λ ⊢ n.

Corollary
∑

λ⊢n(f
λ)2 = n!, where fλ denotes the number of SYT of shape

λ.
Pf. Count both sides of the bijection. □

But π did not have to be a permutation in order for RS to produce something
meaningful. Perhaps we can loosen the structure of π so that the output of this
procedure is a pair of semistandard Young tableaux? We can also generalize the
input, from permutations to matrices. Every permutation is encoded by some
permutation matrix. This is the motivation behind RSK.

2 Generalized Permutations

Definition. Let A = (aij)i,j≥1 be an N-matrix with finite support, i.e. there
are only a finite number of non-zero entries in A. The generalized permutation
associated with A is a 2× n matrix wA,

wA =

(
i1 i2 · · · in
j1 j2 · · · jn

)
,
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such that

1. i1 ≤ i2 ≤ · · · ≤ in (the top row is weakly increasing),

2. If ir = is then jr = js (among all j’s with the same corresponding i’s,
they are weakly increasing), and

3. for each pair (i, j), there are exactly aij occurences of the column

[
i
j

]
in

wA.

Observe that since A is assumed to have finite support, wA must always be
a finitely sized matrix. Furthermore, a regular permutation is a particular type
of generalized permutation, where A is a permutation matrix.

Example Consider the N-matrix

A =


1 0 2 0 · · ·
0 2 0 0 · · ·
1 1 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...


A has finite support, so we may consider it as just the 3× 3 matrix where there
are non-zero entries. The generalized permutation for A is

wa =

(
1 1 1 2 2 3 3
1 3 3 2 2 1 2

)
.

To see that this is true, note that (2, 2) occurs twice in wA, and a22 = 2. Check
this for each entry of A.

3 The Robinson-Schensted-Knuth (RSK) Algo-
rithm

The RSK algorithm is identical to RS, except that we execute the procedure
on input a generalized permutation.
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Example Let’s simulate RSK on wA from the last example. We start with
P0 = ∅, Q0 = ∅.

P1 = 1 Q1 =
1

P2 = 1 3 Q2 = 1 1

P3 = 1 3 3 Q3 = 1 1 1

P4 = 1 2 3

3
Q4 = 1 1 1

2

P5 = 1 2 2

3 3
Q5 = 1 1 1

2 2

P6 =
1 1 2

2 3

3

Q6 =
1 1 1

2 2

3

P7 = 1 1 2 2

2 3

3

Q7 = 1 1 1 3

2 2

3

The Main RSK Theorem

1. RSK is a bijection between N-matrices with finite support and pairs of
SSYT of the same shape.

2. j occurs in P exactly
∑

i aij times, and i occurs in Q exactly
∑

j aij times.

Pf sketch.

• Part 1: prove that each gen. perm. maps to a pair of SSYT with the same
shape.

• Part 2: show that you can reverse RSK. This is not as easy as RS, but it
can be done. The dilemma is that in Q, we might insert the same value i
more than once, and so when going backwards we can’t tell which place to
start at before sliding. The key here is to observe that equal elements are
inserted left-to-right in Q. Thus, we can relabel entries in Q to 1, . . . , n
and reverse in the same way as RS. □

4 Cauchy’s Formula

Just like for the RS correspondence, there is an equivalence arising from the
RSK bijection.
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Theorem (Cauchy’s Formula)

∑
λ

sλ(x)sλ(y) =

∞∏
j,k

1

1− xjxk
,

where the sum is over all partitions λ and sλ is the Schur polynomial

sλ(x) =
∑

T∈SSYT(λ)

xT .

To prove this, we first associate with each generalized permutation a polyno-
mial over variables x = x1, x2, . . . and y = y1, y2, . . .. Then we show that both
sides are equal to the generating function for generalized permutations.

Let π =

(
a1 a2 · · · an
b1 b2 · · · bn

)
be a generalized permutation. Let

topwt(π) = xa1
xa2

· · ·xan
,

bottomwt(π) = yb1yb2 · · · ybn .

Lemma 1
∑

λ sλ(x)sλ(y) =
∑

π topwt(π)bottomwt(π), where the sum is over
all generalized permutations π.

Pf. Using the definition of Schur polynomials,∑
λ

sλ(x)sλ(y) =
∑
λ

( ∑
Q∈SSYT(λ)

xQ
)( ∑

P∈SSYT(λ)

yP
)
=

∑
λ

∑
P,Q∈SSYT(λ)

xQyP .

Let α and β be contents for SSYT of the same shape. The coefficient of xαyβ

above is the number of pairs (P,Q) for which P and Q are SSYT with shape λ
and the content of Q and P is α and β, resp.

Now observe that if π
RSK−→ (P,Q) then topwt(π) = xQ and bottomwt(π) = xP

exactly. The coefficient of xαyβ is the number of generalized permutations π
where topwt(π) = xQ, bottomwt(π) = xP . By the bijectivity of RSK, the
coefficients for xαyβ are equal and so we are done. □

Lemma 2
∑

π topwt(π)bottomwt(π) =
∏∞

j,k(1− xjyk)
−1.

Pf. Every generalized permutation can be constructed by choosing any num-

ber of each column

[
j
k

]
and then arranging them in order such that the three
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properties are preserved. For example, we can choose 3 of

[
1
1

]
, 2 of

[
2
1

]
, and 1

of

[
2
2

]
to get the generalized permutation

(
1 1 1 2 2 2
1 1 1 1 1 2

)
.

In fact, once we choose the columns then there is only one unique way to order
them and obtain a generalized permutation. First, order the columns by non-
decreasing top row. Then for each fixed top row value, order the columns by
non-decreasing bottom row.

In the example above, the expression topwt(π)bottomwt(π) is equal to (x1y1)
3·

(x2y1)
2 · (x2y2)

1. If we consider this expression inside the sum over all gener-
alized permutations, we ”chose” the monomials (x1y1)

3, (x2y1)
2, (x2, y2)

1 (and
(xjyk)

0 for all other columns) and multiplied them together. The sum is thus
the sum over all ways to choose these monomials and take their product. Using
the series

∑∞
n=0 x

n = (1− x)−1, we get∑
π

topwt(π)bottomwt(π) =
∏
j,k

((xjyk)
0 + (xjyk)

1 + (xjyk)
2 + · · · )

=

∞∏
j,k

1

1− xjyk
.

□

Cauchy’s formula follows immediately.

5 RSK Symmetry and Other Corollaries

Theorem (No proof.) Let A be a N-matrix with finite support. If A
RSK−→

(P,Q), then A⊤ RSK−→ (Q,P ).

Corollary A is symmetric iff P = Q. Pf. If P = Q then both A and A⊤ are
mapped to (P, P ). By bijectivity of RSK, this must mean that A = A⊤. On
the other hand, if A = A⊤ then they must map to the same pair of tableaux.
Then P = Q. □

Corollary Let A = A⊤ and A
RSK−→ (P, P ). The map A 7→ P is a bijection

between symmetric N-matrixes and SSYT, such that the sequence of sum of the
rows of A is the content of P .
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Corollary ∑
λ⊢n

fλ = #{w ∈ Sn | w2 = id}.

Pf. Let w ∈ Sn and w
RSK−→ (P,Q), where P and Q are SYT of shape λ ⊢ n.

We know that w is the generalized permutation associated with a permutation
matrix Pw. It is a fact that for all permutation matrices, the transpose of the
matrix is its inverse. If w is an involution, then Pw is its own inverse. Then
P⊤
w = Pw. Vice versa, if P⊤

w = Pw then w is an involution. Each permutation
matrix when passed through RS leads to a pair of SYT. By bijectivity then,
the number of involutions in Sn is exactly the number of pairs of SYT (P, P ) of
shape λ ⊢ n. □
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