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1 The Robinson-Schensted (RS) Algorithm

Recall the RS Algorithm which, given a permuation w € S,,, outputs a pair of
standard Young tableaux (SYT) P and Q. P and @ both have shape A, where
A is some partition of n. Write out 7 as a 2 X n matrix:

RS begins with two empty SYT's, denoted Py and QQg. The algorithm inserts the
bottom row into Py left-to-right, and the final output is P. As m(7) is inserted
into P;_ to get P;, the number ¢ is inserted into @;_1 to get @;. These methods
of insertion are different between P and Q.

e Insertion into P;_;. The number k = 7 (7) is inserted using a slide rule.
Beginning at the first row, we look for an existing entry which has value
greater than k. If no such entry exists, then k is appended to that row
and we are done. Otherwise, suppose we find an entry j > k. Then we
replace the entry j with value k, and ”slide” j into the next row. This
process repeats until an element is appended to some row. Note that if
the row is empty, the input is automatically added to create a new row
with length one.

e Insertion into Q;_1;. We note the last position in which an element was
placed in P;_; to get to P;. We place i in that position in Q;_1 to get Q;.

Example. Let



Py and P; are both empty tableaux. We insert 4 into Py and 1 into Q)g, then
continue.
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Remarks: First, for P and ) each step preserves the fact that rows are in-
creasing left-to-right, and increasing top-to-bottom. The shape of P and @ are
always identical at each step. As a result, RS always outputs a pair of SYT
with the same shape. Second, this algorithm is reversible. Without going into
too much detail, you can imagine using entries in ) to find a position in P, and
”slide backwards” to pull out an element which would have been placed at that
time step. This builds up a permutation last-to-first entry. Thus,

Theorem The RS algorithm is a bijection between permutations over n ele-
ments and pairs of SYT with the same shape A\ - n.

Corollary ", , (f)? = n!, where f* denotes the number of SYT of shape
A
Pf. Count both sides of the bijection. O

But 7 did not have to be a permutation in order for RS to produce something
meaningful. Perhaps we can loosen the structure of 7 so that the output of this
procedure is a pair of semistandard Young tableaux? We can also generalize the
input, from permutations to matrices. Every permutation is encoded by some
permutation matrix. This is the motivation behind RSK.

2 Generalized Permutations

Definition. Let A = (a;5)i j>1 be an N-matrix with finite support, i.e. there
are only a finite number of non-zero entries in A. The generalized permutation
associated with A is a 2 X n matrix wy,
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such that
1. i1 <iy < --- <1, (the top row is weakly increasing),
2. If i, = is then j, = js; (among all j’s with the same corresponding i’s,

they are weakly increasing), and

3. for each pair (4, ), there are exactly a;; occurences of the column [ﬂ in

wA.

Observe that since A is assumed to have finite support, w4 must always be
a finitely sized matrix. Furthermore, a regular permutation is a particular type
of generalized permutation, where A is a permutation matrix.

Example Consider the N-matrix
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A has finite support, so we may consider it as just the 3 x 3 matrix where there
are non-zero entries. The generalized permutation for A is

To see that this is true, note that (2,2) occurs twice in w4, and asy = 2. Check
this for each entry of A.

3 The Robinson-Schensted-Knuth (RSK) Algo-
rithm

The RSK algorithm is identical to RS, except that we execute the procedure
on input a generalized permutation.



Example Let’s simulate RSK on w4 from the last example. We start with

Py=0,Qo=0.
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The Main RSK Theorem

1. RSK is a bijection between N-matrices with finite support and pairs of
SSYT of the same shape.

2. j occurs in P exactly ), a;; times, and i occurs in @ exactly Zj a;; times.
Pf sketch.

e Part 1: prove that each gen. perm. maps to a pair of SSYT with the same
shape.

e Part 2: show that you can reverse RSK. This is not as easy as RS, but it
can be done. The dilemma is that in (), we might insert the same value 4
more than once, and so when going backwards we can’t tell which place to
start at before sliding. The key here is to observe that equal elements are
inserted left-to-right in . Thus, we can relabel entries in @ to 1,...,n
and reverse in the same way as RS. O

4 Cauchy’s Formula

Just like for the RS correspondence, there is an equivalence arising from the
RSK bijection.



Theorem (Cauchy’s Formula)

ad 1
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where the sum is over all partitions A and s) is the Schur polynomial

sa(z) = Z z.

TESSYT(N)

To prove this, we first associate with each generalized permutation a polyno-
mial over variables x = x1,22,... and y = y1,y2,.... Then we show that both
sides are equal to the generating function for generalized permutations.

Let m= (% 92 777 9 peq generalized permutation. Let
by by - by,

topwt(m) = T4, Tay -+ * Za,,

bottomwt(7) = yb, Yo, - - * Yp

"

Lemmal ), sx(z)sa(y) = >, topwt(m)bottomwt(7), where the sum is over
all generalized permutations 7.

Pf. Using the definition of Schur polynomials,

z}\:&\(m)sk(y):Z( > wQ)( > yP)=Z > a2yl
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Let a and 8 be contents for SSYT of the same shape. The coefficient of z%y?
above is the number of pairs (P, Q) for which P and @ are SSYT with shape A
and the content of Q) and P is « and 3, resp.

Now observe that if 7 S5 (P, Q) then topwt(r) = 29 and bottomwt(r) = 2
exactly. The coefficient of 2%y” is the number of generalized permutations 7
where topwt(m) = 29, bottomwt(r) = 2¥. By the bijectivity of RSK, the
coefficients for z®y? are equal and so we are done. O

Lemma 2 ) topwt(m)bottomwt(r) = [175.(1 — z;ux) "

Pf. Every generalized permutation can be constructed by choosing any num-

ber of each column i and then arranging them in order such that the three



properties are preserved. For example, we can choose 3 of [ﬂ , 2 of E] ,and 1

of B] to get the generalized permutation

111 2 2 2

111 11 2)°
In fact, once we choose the columns then there is only one unique way to order
them and obtain a generalized permutation. First, order the columns by non-

decreasing top row. Then for each fixed top row value, order the columns by
non-decreasing bottom row.

In the example above, the expression topwt(7)bottomwt(7) is equal to (z1y1)-
(w2y1)? - (z2y2)!. If we consider this expression inside the sum over all gener-
alized permutations, we ”chose” the monomials (z1y1)3, (72y1)2, (22, y2)* (and
(x;yx)° for all other columns) and multiplied them together. The sum is thus
the sum over all ways to choose these monomials and take their product. Using
the series > 2 (2" = (1 —z)~!, we get

Ztopwt(ﬂ)bottomwt(ﬂ) = H((x‘jyk)o + (wye)t + (zjyR)® + )
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Cauchy’s formula follows immediately.
5 RSK Symmetry and Other Corollaries
RSK

Theorem (No proof.) Let A be a N-matrix with finite support. If A —
(P,Q), then AT ®5 (@, P).

Corollary A is symmetric iff P = Q. Pf. If P = Q then both A and AT are
mapped to (P, P). By bijectivity of RSK, this must mean that A = AT. On
the other hand, if A = AT then they must map to the same pair of tableaux.
Then P = Q. O

Corollary Let A = AT and A RSK (P,P). The map A — P is a bijection

between symmetric N-matrixes and SSYT, such that the sequence of sum of the
rows of A is the content of P.



Corollary
Zf”\:#{wESn|w2:id}.

AFn

Pf. Let w € S, and w RSK (P,Q), where P and @ are SYT of shape A\ - n.
We know that w is the generalized permutation associated with a permutation
matrix P,. It is a fact that for all permutation matrices, the transpose of the
matrix is its inverse. If w is an involution, then P, is its own inverse. Then
P} = P,. Vice versa, if P] = P, then w is an involution. Each permutation
matrix when passed through RS leads to a pair of SYT. By bijectivity then,
the number of involutions in S, is exactly the number of pairs of SYT (P, P) of
shape A F n. O



