Leorure outine:
(i) Intro to plone partitions
(2) crenecting function for plone partitions
(3) Thmil. 3 statement
(4) Schur functions
(5) Proof of Thml.3
(6)

PLANE PARTHIANS:
What is a plane partition?

- A two dimensional array of non-negerine integers
- represented as $\pi_{i, J}$ that is monotonically decreasing in bot; and J.

$$
\rightarrow \pi_{i, J} \geq \pi_{i+1, J} \& \pi_{i, 5} \geq \pi_{i, J+1}
$$

- Also, only finitely many $\pi_{i, j}=0$

Example:

$$
\begin{array}{llll}
4 & 4 & 3 & 21 \\
4 & 3 & 1 & 1 \\
3 & 2 & 1 & \\
1 & & &
\end{array}
$$

Representation of plane partitions in 3-D:
Ex: 32
This is an example of a plane partition of 6 .

Intuition to use, if neesed:
(1) - Take for example, a Fevers diagrom. When we studied SSYT, these mere ways of filling the diagrems with entries s.t. it is weakly increarry accross the rows, x shictly inciersigy down colums.

- Reversed SSYT, was weakly decuessing
de creesing columins.
- Plone partifiors are anomer wey to fill in SSYT w/ weaky decreasing nows \& columns

From mis representation, we can also see that plane pervious can be represented as a set of finite points P sit if (r, s, t) $\in P$ and (i, T, K) satisfies

$$
1 \leq i \leq r, \quad 1 \leq j \leq s, \quad 1 \leq k \leq t,
$$

then $(i, j, k) \in P$.

- we define the sum of a pone partition as $n=\sum_{i, 5} \pi_{i, J}$ The sum, therefore, quite obviously is equal to the number of cubes in me 3-D presentation.
- we denote the number of ploce partitions with sum n os $P L(n)$.
Ex: $\quad P L(3)=6$
$3 \quad 21 \quad 1111 \quad 2 \begin{array}{lllll} & 1 & 1 & 1\end{array}$

Gerereting function of plane pertitions:
The gencreing function for me \# of plone partitions of sum n is given by:

$$
\begin{aligned}
\sum_{n=0}^{\infty} P L(n) x^{n} & =\prod_{k=1}^{\infty} \frac{1}{\left(1-x^{k}\right)^{k}} \\
& =1+x+3 x^{2}+6 x^{3}+13 x^{4} \ldots
\end{aligned}
$$

Con be viewed as me 2-D analog to the formule for intagee portitions of n :

$$
\sum_{n=0}^{\infty} p(n) x^{n}=\prod_{k=1}^{\infty} \frac{1}{1-x^{k}}
$$

V Ery intenschy, be cause only differes slighty.

$$
\beta(r, s, t):
$$

From the 3-D pictme, we can see thet, if we diew a cuboid around it, of size $(3,2,2)$ we'd be abce to contain me entive plene patilion wiruin it.

$$
\begin{aligned}
& \therefore F(r, s, t)=\{(i, 5, k) 1 \leq i \leq r, \\
& 1 \leq J \leq s, \\
&1 \leq k \leq t\}
\end{aligned}
$$

Theorem 1.3: The geneleting function for plane partitions (i, k, j) that are subsets of $\beta(r, s, t)$ is ${ }_{r}$ men by

$$
\prod_{i=1}^{r} \prod_{k=1}^{t} \frac{1-q^{i+k+s-1}}{1-q^{i+k}-1}
$$

Using Scher fanchons:
slum functions give us a lot of toss to consmuct gereerly functions for plane partitions. We know scum functions an be used for genclang funchous of SsyT. we will see how mel con her used for plane partitions
Ex. SS YT $(5,3,3,2,1,1)$ with $n=6$.

1	1	3	3	4					
2	3	4							
3	5	5							
4	6								
5					$\quad \longrightarrow$	x_{1}	x_{1}	x_{3}	x_{3}
:---	:---	:---	:---						
x_{4}	x_{4}								
6		x_{3}	x_{4}						
x_{3}	x_{5}	x_{5}							
x_{4}	x_{6}								
x_{5}									
x_{6}									

Each of mere variables con be used to represent stacks of urges of diff wits. let $x_{1}=q^{6}, x_{2}=q^{5}, x_{3}=q^{4}$ i ${ }^{\circ}$ c cuber. note how x_{1} comes perids to $q^{6}, b c$ of the fact hat SSYT increase shictly down a column and increate weak es across a void.

This Gels us mof $S_{(5,3,3,2,1,1)}\left(q^{6}, q^{5}, \ldots q\right)$ is the geaceing funchion for column shict plane partitions with all steck neights us then or equel to 6 e row lenguls given by we perts of $\lambda: 5,3,3$, $2,1,1$.
For our proof of the generelng function arove, we will noweree use a diffeeent def ${ }^{n}$ of Schm polynoniale.
Nancely,

$$
\begin{aligned}
& S\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \\
& \frac{\operatorname{det}\left(x_{5}^{n-i}+\lambda_{i}\right)}{\operatorname{det}\left(x_{J}^{n-i}\right)} \\
& =\frac{\operatorname{det}\left(x_{J}^{n-i+\lambda i}\right)}{\prod_{1 \leq i<J \leq n}\left(x_{i}-n_{5}\right) E} \text { vandumbnde formula. } \\
& \text { Enample } \quad n=3 . \lambda=(2,1,1)
\end{aligned}
$$

$$
\begin{aligned}
& S_{2,1,1}(x, y, z) \\
&=\left|\begin{array}{ccc}
x^{4} & y^{4} & z^{4} \\
x^{2} & y^{2} & z^{2} \\
x & y & z
\end{array}\right| \\
& \frac{(x-y)(x-z)(y-z)}{(x y y y}+x y z^{2}
\end{aligned}
$$

Now, back to the proof of the generating function.
$\lambda=s^{r}$ is the partition with r copies of s, i.e, rs.
\therefore Erelualyg s_{λ} at $x_{1}=q^{t+r}, x_{2}=q^{t+r-1}$,
$\ldots x_{t+r}=q$, we get mat s_{λ} is me geneceng function for comm erricr pone partitions wite ' r ' vows, each of langm ' s ' and max height ' $t+r$ '.
Now, in order to get me partition to 'fit' irsite me box, we core one curse form each stench in row r, fro from
each in row $r-1$,..., and r from each in row r. \therefore
the largest slack, which by necessity must be somewhere in the forst row, has been reduces to max ht. of t. This is alto a bijection, we con sort from any partition within the box, and follow the reverse to get a plane partition oukide.
\therefore The plane partition gereeng function we seek is given by

$$
\left.q^{-r s}(r+1) / 2 s_{\lambda}\left(q^{t+r}, q^{t+r-1}\right) \cdots, q\right) *
$$

where $\lambda=(s, s, s, \ldots, 0,0,0)$.

$$
\therefore \lambda_{i}= \begin{cases}s, & \text { if } 1 \leq i \leq r \\ 0, & \text { if } r<i \leq t+r\end{cases}
$$

Now, focusing on the Sch function part of on gen. f^{n}.

$$
S_{\lambda}\left(q^{t f r}, q^{t+r-1}, \cdots, q\right)=\frac{x}{y}
$$

where

$$
\begin{aligned}
& x=\operatorname{det}\left(\left(q^{t+r-J H}\right)^{t+r-i+\lambda_{i}}\right)_{i, 5=1}^{t+r} \\
& y=\prod_{1 \leqslant i<j \leqslant t+r}\left(q^{t+r-i+H}-q^{t+r-j+1}\right)
\end{aligned}
$$

lets focus on x :
For each, we con take out a common factor of $q^{t+r-i+\lambda_{i}}$ from the $i^{\text {m }}$ yow.

$$
\begin{aligned}
& \therefore x=q^{s r+(t+r)(t+r-1) / 2} \underbrace{\operatorname{dt}\left(q^{(t i r-J)\left(t+r-i+\lambda_{i}\right)}\right)}_{\text {Vardermonde }} \\
& \left.x=q^{s r+(t+r)(t+r-1) / 2} \prod_{1 \leq i<j \leq t-r}^{t+r-i+\lambda_{i}}-q^{\left.t+r-J+\lambda_{j}\right)}\right)
\end{aligned}
$$

Now on γ :
we false a factor of q out of each of me $(t+r)(t+r-1) / 2$ terms in γ.

$$
\therefore \operatorname{in~}^{y} y=q^{(t+r)(t+r-1) / 2} \prod_{1 \leqslant i<j \leqslant t+r}\left(q^{t+r-i}-q^{t+r-5}\right)
$$

putting mus into \mathbb{K} we get

$$
q^{-\operatorname{sr}(r-1) / 2} \prod_{1 \leqslant j \leqslant t+r} \frac{q^{t+r-i+\lambda_{i}-q^{t+r-j+\lambda j}}}{q^{t+r-i}-q^{t+r-j}}
$$

when is $J \leq r$, we get tet me term insists me product is

$$
q^{t+r-i+s}-q^{t+r-j+s} q^{t+r-i}-q^{t+r-s}=q^{s}
$$

by taking q^{s} common from me memerefor. This is the to me deg^{n} of λ_{i}.
There ore $r(r-1) / 2$ pairs of (i, T) s.t me posuct becomes q^{3}.
\therefore This eliminates rue term in foal of the prounct.
when is $J \perp r$, the quantify mite the product is 1 , os $\lambda_{i}=0$. \therefore The only tours eft ar when $1 \leq i \leq r \quad \& r+1 \leq j \leq t+r$
\therefore we or left win

$$
\prod_{i=1}^{r} \prod_{J-r+1}^{t+r} \frac{q^{t+r-i+s}-q^{t+r-j}}{q^{t+r-i}-q^{t+r-j}}
$$

multiplying each teem up adown by $q J-t-r$, we get

$$
\prod_{i=1}^{r} \prod_{J=r+1}^{k+r} \frac{1-q^{J-i+s}}{1-q^{5-i}}
$$

Now upleng J by $k+r$ \& i by $r+1-i$ to get the form we

$$
\prod_{i=1}^{r} \prod_{k=1}^{n-n t} \frac{1-q^{i+k+s-1}}{1-q^{i+k-1}}
$$

$$
\begin{aligned}
& \rightarrow \frac{\text { emmen } 1.1:}{r} \prod_{i=1}^{r} \prod_{k=1}^{t} \prod_{j=1}^{s} \frac{1-q^{i+5+k-1}}{1-q^{i+5+k-2}}
\end{aligned}
$$

In mis, $i x k$ are fired in each product inside the innermost Π.

$$
\begin{aligned}
& \therefore \prod_{j=1}^{s} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}} \\
& =\frac{1-q^{i+k}}{1-q^{i+k-1}} \times \frac{1-q^{i+k+1}}{1-q^{i+k}}
\end{aligned}
$$

$$
\cdots \frac{1-q^{i+k+s-1}}{1-q^{i+k+s-2}}
$$

This product telesospee, leaving us wit only

$$
\frac{1-q^{i+k+s-1}}{1-q^{i+k-1}}
$$

\therefore The equality holds. Now, finally, to get the generating junction jor all plane pertrions:

$$
\sum_{n=0}^{\infty} P L(n) q^{n}=\prod_{c=1}^{\infty} \frac{1}{\left(1-q^{l}\right)^{c}}
$$

we let $i+5 H k-2=c . \therefore$
$i+j+k=1+2 \ldots$ The number of non-negahive int. sol ${ }^{n!}$ s 10 wis for a fixed l is given by sears and bars tum $1=\binom{L+2-1}{3-1}$

$$
=\binom{L+1}{2}
$$

Similarly, $i+5+k-1=c+1$ and as

$$
\text { This equals }=\frac{\left(1-q^{2}\right)}{(1-q)} \frac{\left(1-q^{3}\right)^{3}}{\left(1-q^{2}\right)^{3}}
$$

which simplifies to

$$
\prod_{c=1}^{\infty} \frac{1}{\left(1-q^{l}\right)\binom{(+1)}{2}}-\binom{2}{2}
$$

Now, simplify it the binomial coefficients:

$$
\begin{aligned}
& \binom{l+1}{2}=\frac{(L+1)!}{2!(L-1)!} \\
& \binom{l}{2}=\frac{L!}{2!(L-2)!} \\
\therefore & \frac{(L+1)!}{2(l-1)!}-\frac{c!}{2!(l-2)!} \\
= & \frac{(L+1)!}{2(L-1)!}-\frac{l!(l-1)}{2(l-1)!}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{L!(L+1-L+1)}{2(L-1)!} \\
& =\frac{L!(2)}{2(L-1)!}=L
\end{aligned}
$$

$\therefore \operatorname{limplifies~to~:~}$

$$
\prod_{L=1}^{\infty} \frac{1}{\left(1-q^{l}\right)^{l}}
$$

Vandeumonde Manices:

$$
V=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}{ }^{2} & \cdots & x_{0}{ }^{n} \\
1 & x_{1} & x_{1}{ }^{2} & \cdots & x_{1}{ }^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
i & x_{n} & x_{n}{ }^{2} & & x_{n}{ }^{n}
\end{array}\right]
$$

They ore squere.

$$
\operatorname{det}(v)=\prod_{0 \leq i<5 \leq n}\left(x_{5}-x_{i}\right)
$$

Proof: By the kibniz formule, we ore rolal mat me deteleminent of v is a polynomial in x_{i},
with niger coefficient, and all of the teems of mic polynomial hare total degree $\frac{n(n+1)}{2}$.
For any Teem of v in which $i=\pi$, if re substinuite x_{i} for x_{j}, the $\operatorname{aet}(V)$ becomes O as rouen we hare two identical rows.
$\therefore\left(x_{j}-x_{i}\right)$ must be a divisor of the polynomial $\operatorname{det}(v)$.
And by me unique factorization prop of multivariate paynomcciods, the product of av l $\left(x_{J}-x_{i}\right)$ divides set (v).

$$
\therefore \quad \operatorname{det}(v)=Q \prod_{i \leq i<j-x}\left(x_{5}-x_{i}\right) \text {, where }
$$

Q is a poly nomial. however, since $\operatorname{det}(v)$ has power $\frac{n(n+1)}{2}$ and so does me product $\pi\left(n_{s}-x_{i}\right)$, Q is consent.
And since the product of the dagonol entries of V is $x_{1} x_{2}^{2} \ldots x_{n}^{n}$, which is also me monomial - blaine by being the first tum of all of the factors in $\pi_{0 \leq i<j \leq n}\left(x_{5}-x_{i}\right)$,
the constent Q must be 1 . tence proned.
schuer function as quotrent of actecminorb:
use en from pege 124.
Have vandermonde formula as a sepurete prop.
Arore from wikipesia- polynivia prop

