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1 Schur Functions and Semistandard Tableaux

First, we will add some new definitions to Ferrers diagrams so that we can state
new propositions. Recall the convention that, for any filling T of a Ferrers di-
agram with positive integers, xT denotes the monomial given by

∏
j∈J xj . For

the above example, the associated monomial is x2
1x

2
2x3x4x

2
6.

Definition 1.1. Define StrictRow(λ,A) as the set of fillings of a Ferrers diagram
of λ with entries in A in which each row is strictly increasing from left to right.

Proposition 1.2. For any partition λ, integer n ≥ 1, we have the following two
results:

eλ(Xn) =
∑

T∈StrictRow(λ,[n])

xT (1)

eλ =
∑

T∈StrictRow(λ,P)

xT (2)

Proof. We have that eλ(Xn) =
∏l(λ)

j=1 eλj (Xn). Define tj as eλj (Xn).
For each product tj , we can construct a filling of the Ferrers diagram of λ by
placing the subscript of each variable in tj in increasing order in the j-th row of
the diagram, 1 ≤ j ≤ l(λ). Likewise, for each filling of the Ferrers diagram, we
can reconstruct tj for 1 ≤ j ≤ l(λ) as the product

∏
k xk, for all k that appear in

the j-th row. Consequently, there is a bijection between eλ(Xn), the fillings of
the diagram. Since the image of a filling T is xT , (1) follows.

The proof for (2) is similar.

Example 1.3. Find all fillings T of the Ferrers diagram of (32, 1), associated
with the term x2

1x2x
3
4x6 in e331.

e331 = e3e3e1, so we need to write x2
1x2x

3
4x6 as a product of 3 factors of degrees

3, 3, and 1, respectively. x4 has degree 3, so it is in each factor, and x1 has
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degree 2, so it is in two of the factors, etc., so x2
1x2x

3
4x6 = (x1x2x4)(x1x4x6)x4 =

(x1x4x6)(x1x2x4)x4. This gives the two associated Ferrers diagrams:

4
1 2 4
1 4 6

4
1 4 6
1 2 4

Definition 1.4. Define WeakRow(λ,A) as the set of fillings of a Ferrers diagram
of λ with entries in A in which each row is weakly increasing from left to right.

Proposition 1.5. For any partition λ, integer n ≥ 1, we have the following
results:

hλ(Xn) =
∑

T∈WeakRow(λ,[n])

xT (3)

hλ =
∑

T∈WeakRow(λ,P)

xT (4)

The proofs for (3) and (4) are similar to the proof for (1).

Definition 1.6. For any λ, a semistandard tableaux of shape λ is a filling of a
Ferrers diagram of λ with entries strictly increasing in columns (column-strict),
and weakly increasing in rows (row-non-decreasing). sh(T ) denotes the shape
of the SST, SST (λ;n) denotes the set of all SSTs of shape λ with entries in [n],
and SST (λ) is the set of all SSTs of shape λ with entries in P.

Example 1.7. Find all semistandard tableaux of shape (22,1) with entries in
[3].
Since we know the columns are strictly increasing, and the rows are weakly
increasing, it follows that we get:

3
2 2
1 1

3
2 3
1 1

3
2 3
1 2

Using semistandard tableaux, we can construct new polynomials and power
series, which will hopefully be symmetric.

Definition 1.8. Schur polynomial: sλ(Xn) =
∑

T∈SST (λ;n)

xT

Definition 1.9. Schur function: sλ =
∑

T∈SST (λ)

xT

Example 1.10. Find s1k(Xn), s1k
s1k(Xn) is a sum over all fillings of a single column with distinct integers in
[n], where the column is column-strict. For n < k, no such fillings will exist,
∴ s1k(Xn) = 0.
For n ≥ k, there will be a unique filling of the Ferrers diagram for each subset
of [n] that has size k. Denoting the set of subsets with size k as J, we have the
monomial

∏
j∈J xj ,∴ s1k(Xn) = ek(Xn). Similarly, s1k = ek
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Example 1.11. Find sk(Xn), sk
sk(Xn) is a sum over all possible fillings of a single row with integers in [n] that
are weakly increasing from left to right. For each submultiset, there will exist
a unique filling, where the monomial corresponding to each submultiset J is∏

j∈J xj , meaning sk(Xn) = hk(Xn), and similarly sk = hk.

Example 1.12. Express s21(X1), s21(X2), and s21(X3) as linear combinations
of symmetric polynomials.
s21 is a sum over all SST such that sh(T ) = (2, 1), with entries in [1]. The left-
most column must have 2 distinct integers, but we only have one, so s21(X1) =
0
s21(X2) has two possibilities:

2
1 1

2
1 2

From the above, we get that s21(X2) = x2
1 + x2 + x1x

2
2 = m21(X2).

The steps to find s21(X3) are omitted for the sake of brevity. One will find that
s21(X3) = m21(X3) + 2m111(X3)

Definition 1.13. For any semistandard tableaux T , the content of T is the se-
quence {µj}infj=1, where µj is the number of j’s in T for each j. When µj = 0 for
j > n, we write {µj}nj=1

Proposition 1.14. Suppose λ ⊢ k, λ ≥ 1. Then, sλ(Xn) ∈ Λ(Xn), and sλ ∈ Λk.

Definition 1.15. For any partitions λ, µ, the Kostka numbers Kλ,µ denote the
number of semistandard tableaux with shape λ and content µ.

Remark 1.16. For any partition λ, sλ =
∑
µ⊢|λ|

Kλ,µmµ

Proposition 1.17. For any λ, µ such that |λ| = |µ|, n ∈ N, let Kλ,µ,n be the
number of semistandard tableux with shape λ, content µ, and entries in [n]. If
n ≥ λ,Kλ,µ,n = Kλ,µ, i.e. Kλ,µ,n is independent of n.

Proof. µ is a partition, n ≥ |λ| = |µ| ⇒ µj = 0 for j ≥ n, which means that any
semistandard tableaux with shape λ and content µ cannot have entries larger
than n, so Kλ,µ,n and Kλ,µ count the same semistandard tableux, which gives
the conclusion that Kλ,µ,n = Kλ,µ.

Example 1.18. We now want to show that Schur functions of degree k are a
basis for Λk, which we can do by examining the coefficients when we write sλ
as a linear combination of monomial symmetric functions. We can do this by
looking at matrices of Kostka numbers.
K1,1 =

[
1
]

K2,2 =

[
1 0
1 1

]
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K3,3 =

1 0 0
2 1 0
1 1 1



K4,4 =


1 0 0 0 0
3 1 0 0 0
2 1 1 0 0
3 2 1 1 0
1 1 1 1 1


Proposition 1.19. ∀k ≥ 0, λ ⊢ k, µ ⊢ k

1. µ >lex λ ⇒ Kλ,µ = 0

2. Kλ,λ = 1

Proof. µ >lex λ ⇒ ∃m such that µm > λm, µj = λj for 1 ≤ j ≤ m− 1
No semistandard tableaux can have a 1 in its 2nd row or higher, a 2 in its 3rd
row or higher, a j in the j + 1-th row or higher, etc. Consequently, a filling T of
λ with content µ can be semistandard tableaux if and only if it has j’s in every
entry of the j-th row for 1 ≤ j ≤ m− 1. Since µm > λm, then by the pigeonhole
principle some column of T has two m’s, therefore it is not a semistandard
tableaux. This proves 1, and the proof for 2 is similar.

Proposition 1.20. ∀k ≥ 0, {sλ|λ ⊢ k} is a basis for Λk

Proof. Similar to the proof that {eλ|λ ⊢ k} is a basis for Λk

2 Schur Polynomials as Ratios of Determinants

Definition 2.1. For integer n ≥ 1, a polynomial f(Xn) is alternating whenever
π(f) = sgn(π)f ∀π ∈ Sn

Example 2.2. Find the alternating polynomial f(X3) with the fewest terms,
containing x3

1x
2
2x3

π( ) ⇒ π(x3
1x

2
2x3) = x3

1x
2
2x3, sgn(π) = 1

π(1 2) ⇒ π(x3
1x

2
2x3) = x3

1x2x
2
3, sgn(π) = −1

π(1 2) ⇒ π(x3
1x

2
2x3) = x2

1x
3
2x3, sgn(π) = −1

π(2 3) ⇒ π(x3
1x

2
2x3) = x3

1x
3
2x3, sgn(π) = −1

π(1 3) ⇒ π(x3
1x

2
2x3) = x1x

2
2x

3
3, sgn(π) = −1

π(1 2 3) ⇒ π(x3
1x

2
2x3) = x1x

3
2x

2
3

π(1 3 2) ⇒ π(x3
1x

2
2x3) = x2

1x2x
3
3

⇒ f(Xn)x
3
1x

2
2x3 − x3

1x2x
2
3 − x2

1x
3
2x3 − x1x

2
2x

3
3 + x1x

3
2x

2
3 + x1x

3
2x

2
3

Example 2.3. Show that there does not exist an alternating polynomial with
x1x2asaterm
If x1x2 is a term, then for π = (1 2), sgn(π) = −1, and −x1x2 must also be a
term, which is a contradiction.
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Proposition 2.4. If µ1, · · · , µn are nonnegative integers such that uj ̸= ul for
j ̸= l, and f(Xn) is an alternating polynomial for Xn. then the coefficient of
xµ1

1 · · ·xµn
n is 0

Proof. If axµ1

1 · · ·xµn
n ∈ f(Xn), then sgn((j l))(axµ1

1 · · ·xµn
n ) = −axµ1

1 · · ·xµn
n ⇒

a = 0.

Remark 2.5. The above proposition means that we can construct nonzero alter-
nating polynomials from monomials with distinct exponents, which will allow
us to show that the alternating polynomial can be expressed as a determinant.

Proposition 2.6. If µ is a sequence such that µ1 > µ2 > · · · > µn ≥ 0, then
aµ(Xn) =

∑
π∈Sn

sgn(π)xµ1

π(1)x
µ2

π(2) · · ·x
µn

π(n), then aµ(Xn) is an alternating polyno-

mial in x1, x2, · · · , xn. Further, aµ(Xn) is homogeneous of degree µ1 + · · ·+µn,
has n! terms, and aµ(Xn) = det(x

µj

l )1≤j,l≤n

Proof. We know that for σ ∈ Sn, σ(aµ) =
∑
π∈Sn

sgn(π)xµ1

σπ(1) · · ·x
µn

σπ(n). If τ = σπ,

then π = σ−1τ, so as π ranges over Sn, so does τ,∴ σ(aµ) =
∑
τ∈Sn

sgn(σ)sgn(τ)xµ1

τ(1) · · ·x
µn

τ(n) =∑
π∈Sn

sgn(σ−1τ)xµ1

τ(1) · · ·x
µn

τ(n). Consequently, each term is of degree µ1+· · ·+µn,

consequently it is homogeneous of degree µ1 + · · ·+µn. Further, µ1, · · · , µn are
distinct, so all the terms of an(Xn) are distinct, so there are n! terms. Using the

fact that det(A) =
∑
π∈S

sgn(π)
n∏

j=1

Ajπ(j), the statement follows.

Remark 2.7. It is more convenient to use partitions to index rather than inte-
gers. Using an inductive proof, we find that µn−j ≥ j for 0 ≤ j ≤ n− 1, denote
this as δn. Define λ by λj = µj − δn(j), 1 ≤ j ≤ n.λ is a partition with at most n
parts, so the map from µ → λ is bijective, so we can view aµ(Xn) as aλ+δn(Xn)

Proposition 2.8. ∀n ≥ 1, aδn(Xn) =
∏

1≤j<l≤n

(xj − xl). For all n ≥ 1, and

partitions λ with at most n parts, there exists a symmetric polynomial g(Xn)
such that aλ+δn(Xn) = g(Xn)aδn(Xn).

Proof. First, we show that (xi − xj)|P (Xn), (xl − xk|P (Xn) ⇒ (xi − xj)(xl −
xk)|p(xn), which is true since (xi − xj) are prime in C[x1, · · · , xn]

aδn(Xn) =


xn−1
1 xn−1

2 · · ·

xn−2
1

. . .
...


If we set x1 = x2, then the first two columns are equivalent, meaning the deter-
minant is 0. The same is true for x1 = xi, 2 ≤ i ≤ n = 0 We find that, repeating
this

(
n
2

)
times gives us that the determinant is a polynomial with degree

(
n
2

)
.
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Similarly, det(xµj

l )1≤j≤n =

∣∣∣∣∣∣∣
xµ1

1 xµ1 . . .
xµ2

1 xµ2

2 . . .
...

...
. . .

∣∣∣∣∣∣∣
The above determinant gives us that (x1 − x2)(x1 − x3) . . . (xn−1 − xn), which
divides aδn by repeated use of the lemma. But this also has degree polynomial
also has degree

(
n
2

)
, which gives that aδn(x) = kQ(x), k ∈ C, and by checking

we get that k = 1.
For the second part of the proposition, the same reasoning as above gives us that
aδn(Xn) = (x1 − x2) . . . (xn−1 − xn|aλ+δn(x)), and deg aλ+δn(x) > aδn(X)
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