Def: Let X be a partlin. The monomial symmetric Function mx(Xn) = | k mx (Xn) where

 $- m_{\lambda}'(X_n) = \overline{Z} \pi(X_i^{\lambda_i} \cdot X_{\ell(\lambda)})$   $\pi \times (X_n) = \overline{Z} \pi(X_i^{\lambda_i} \cdot X_{\ell(\lambda)})$ 

- k = Q s.t. <xi. .. xeas) /2(/m)=1

Ex: >= (1,1), n=3

mx (x3)= (x, x2+(12) x x2+(13) x, x2

+ (123) X /2 + (132) X /2+ (23) X, /2)

= x1x2+x1x2+ x2x3+ x2x3+ x1x3+ x1x3

= 2 (x1x2+ x2x3+x1x3)

=) 1c= = 1 my(x3)

Lemma 1: mx(Xn) sym (=) mx(Xn) sym Prop 2: n/ (Xn) is sym

Pt: Let ot Sn. l=l(1). Then

 $\sigma(m_{\chi}(\chi_n))=\overline{2}\sigma(\pi(\chi_1, \chi_2, \chi_2))$ 

 $= \sum_{x \in S_n} (\sigma \circ \pi) (\chi_1^{\lambda_1} \dots \chi_\ell^{\lambda_\ell}) = \sum_{x' \in S_n} \pi' (\chi_1^{\lambda_1} \dots \chi_\ell^{\lambda_\ell})$ 

 $\chi \in Sn$   $\chi \in Sn$ 

Prop 3: / ma (xn) Sal-K is a busis for 1/k(Xn)

Pf: Span: Let fENd(Xn), let CX1: Xn be some monomial appearing in f. b/L f=xf Vx =>

...+ C X1e1... Xnen+ d T(x1e1... Xnen) = CT (x1e1...+x1n)

Monomial Symmetric Function 2 Fact: {Xi...Xn} kire?o formabasis for CZXI,...,Xn) =>cZz(xi:..xn) appears in f zesn 11 by A. Choose cZz(o(xi...xn)) ost. o(xi...xn) zesn  $\frac{\chi_{i,i}}{\chi_{i,j}} = \frac{\chi_{i,i}}{\chi_{i,j}} = \frac{\chi_{i,i}}{\chi_{i,j}}$ =) f-(m/(Xn) E/k(Xn). Repeat/use induction =) m/(Xn) Spans Ne(Xn) (=) m/(Xn) spans Ne(Kn) - P(1c)(X2) = (X1+X2) M(2)(X2) = X1+X2 L.I. Check Remore: The "c=1" purt of pf=) If

f= Zaxmy, to find ax (=> finding coefficient of Xi... xin in f=:(xi...xin)f Prup47674, 14, 4, 18, 4, 15, 15, 15, 18 AHC are bases for Pf! Except for that in other cases we saw that  $?_{\lambda} = \sum_{m \neq k} M_{\lambda m}(?, m) M_{\lambda m}$ (M)M(?, m)) is triangular and M(?n)) 0 Using Remark => transition matrix invertible => housis Ex 1 (n=k=2): (12), (2) +2, M/2)(X2)=X1X2 = X12+X12+2X1X2 = 2 M(11)(X2) + M2)(X2) - P(2)(42)=X, 24X2=M(2)(X2) -> m/p) (12)(2)

Generating Functions

Def Ck(Xn)= 2 TK distinct Xi, it [a] hk(Xn)= [ ] Krepeatable Xi, ic [n] Lemma 5: (a) E(t) = 2 ek = II(I+ K;t) (b) H(t)- これとと- デートxjt Pf: (a) Recall 9. f. for partitions w/ distinct  $\int_{x=0}^{\infty} \left(1+x^{j}\right) = \frac{2}{2} \left| k=Z_{i} \right|_{x=0}^{\infty} \left| x^{k} \right|_{x=0}^{\infty}$ 11 (1+ x;) = 2 all i distinct Problem; b4, x was adummy vorinble that kept track how large each part ton was Sol Keplace x; my x; t, now t keeps track of deg

(b) Similar story with

$$\frac{1}{1-x^{2}} = \sum_{k=0}^{\infty} |k=2i| \\ |k$$

\_\_\_\_ k cycles In 1 = # of ways to partition a set order K non-empty unlabeled Subsets
Avent mater - repeatable

(Eth)

(Ethn) Cor 8:(a) = [1] + = [1] (++i) (b) ~ { ntist = [], 1-it Pf: (b) Set xj= 1 3 1 6jen in Lemma 5/6). Then use Prop 7 (b), similarly

Identities

Sunday, January 30, 2022 11:18 AM

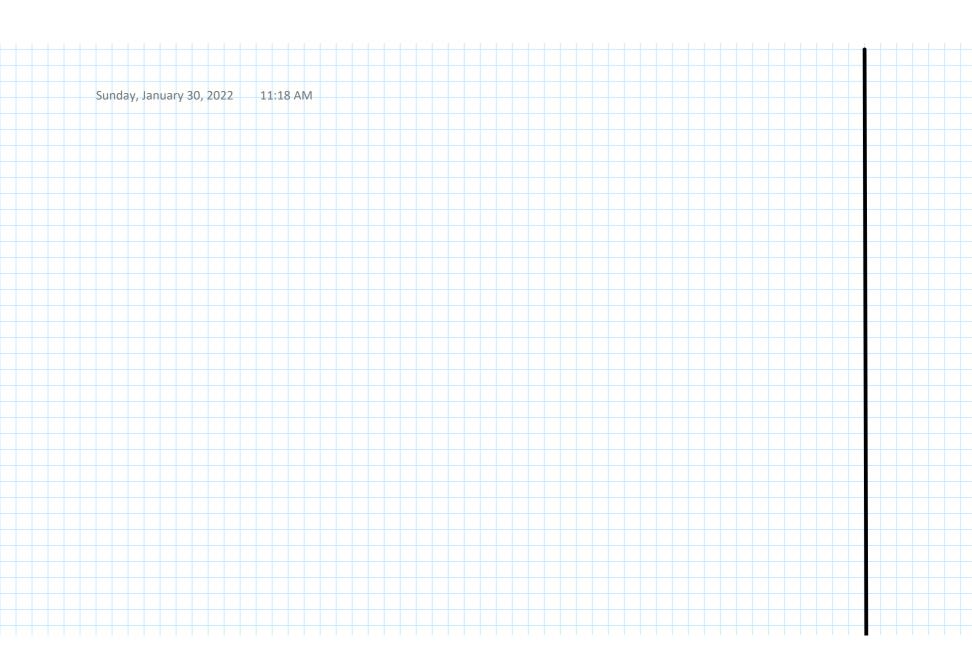
Remark: [N] = # TCSn s.t. Thas exactly

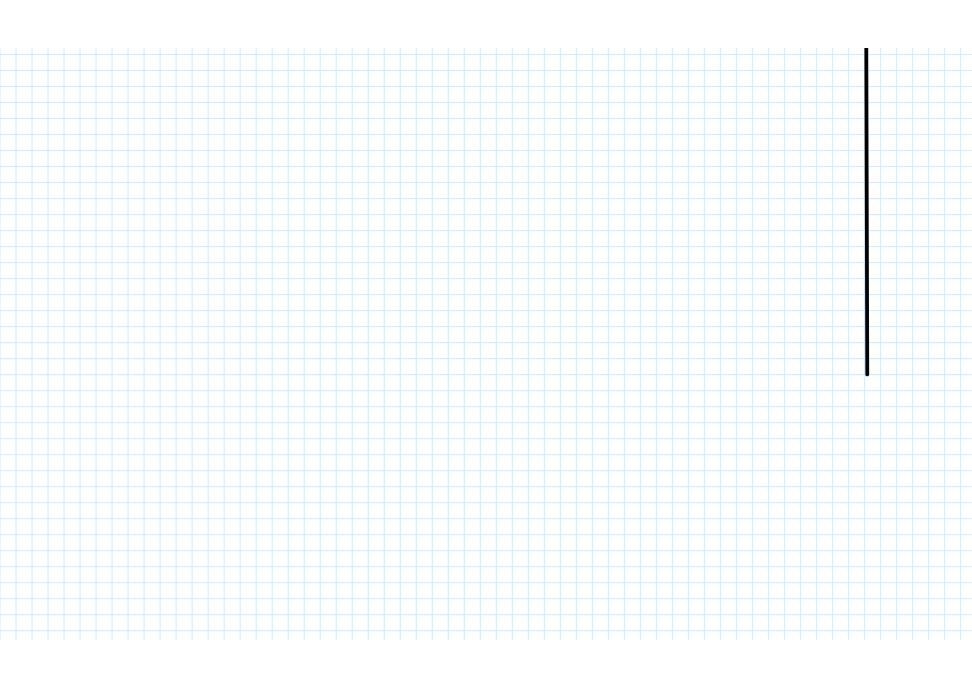
le cycles (a) (1+t)(1+qt)... (1+qm1+) = \( \frac{1}{2} \) (n) tk

order notters c----> distinct (b)  $(1-\epsilon)(1-q+)...(1-q^{n-1}\epsilon) = \sum_{j=0}^{\infty} {k=0 \choose n+j-1} + k$ Pf(a) Set  $kj = \begin{cases} qj-1 & 1 \leq j \leq n \end{cases}$  in Lemma 3 (a) and use Prop 6 (c) Recall E(-t) H(t)=1=) ½ (-1) e; hn-j= 0 +n=1 (x) (or 10; (a) \(\sigma\) (1) (m+n-j-1) = () (b) = (1) = (n+1-i) { n+m-i} { = 0

| Schur Polynomials Sunday, January 30, 2022 11:18 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Def Let $\lambda$ be a partition. A semistandard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (Young) tableau of shape is a tilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| of the Young diagram for a s.t. reperture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · rows weakly increase (left to right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - Columns strictly increased distinct - English (top to bottom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - French (bottom to top)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Let SST(\(\lambda_1\tag{Za}\)) = S.S. tableau of shape \(\lambda\) w/ entries from [n]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Def Let I be a partition. The schar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| polynomial SX (Xn) is defined as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Polynomial $S_{\lambda}(X_{n})$ is actined $S_{\lambda}(X_{n})$ "(orbinatorial def') $S_{\lambda}(X_{n}) = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N}$ |
| CX&, 11-13-11, 11-11, 13, 001,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ~> 5 (x3) = x1 x2 x3 = e3(x3) filling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Exercise Compute (i) S\_(X3) (ii) S\_(X3) An:(1) (1111), (1112), (11137, (1212), (11213) (133), (221), (233), (333) SIII(X3) = X,3+ X,3+ X33+ X2(X2+X3) + X2 (X1+X3) + X32(X1+X2) + X1X2X3 (ii) | T] | T] | h3(X5) S(F) (K) = X12 (X2+X3) +X22 (X1+X3) +X3 (X+X2) - Notice 13(x3) - SID(x3) - SP(x3) + SB(x3)


$$\begin{aligned}
&= \chi_{1}^{3} (\chi_{2}\chi_{3} - \chi_{2}\chi_{3}^{2}) - \chi_{1}^{2} (\chi_{2}^{3}\chi_{3} - \chi_{2}\chi_{3}^{3}) \\
&+ \chi_{1} (\chi_{2}^{3}\chi_{3}^{2} - \chi_{2}^{2}\chi_{3}^{3}) \\
&= \chi_{1}\chi_{2}\chi_{3} (\chi_{1}^{2}\chi_{2} - \chi_{1}^{2}\chi_{3}) - \chi_{1}\chi_{2}\chi_{3}(\chi_{2}^{2}\chi_{1} - \chi_{1}\chi_{2}\chi_{3}) - \chi_{1}\chi_{2}\chi_{3}(\chi_{2}^{2}\chi_{1} - \chi_{1}\chi_{3}^{2}) + \chi_{1}\chi_{2}\chi_{3} (\chi_{2}^{2}\chi_{3} - \chi_{2}\chi_{3}^{2}) + \chi_{2}\chi_{3}(\chi_{2}^{2} - \chi_{3}^{2}) + \chi_{2}\chi_{3}(\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}(\chi_{2}^{2} - \chi_{3}^{2}) + \chi_{2}\chi_{3}(\chi_{2}^{2} - \chi_{3}^{2}) + \chi_{2}\chi_{3}(\chi_{2}^{2} - \chi_{3}^{2}) + \chi_{2}\chi_{3}(\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} (\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi_{1}^{2} - \chi_{1}\chi_{1} - \chi_{1}\chi_{3} + \chi_{2}\chi_{3}) (\chi_{2}^{2} - \chi_{3}^{2}) \\
&= \chi_{1}\chi_{2}\chi_{3} ((\chi$$


Combinatorics of Coefficients Lemma 12:  $\overline{h_{\lambda}}(X_n) = \overline{Z} \overline{X}^{\overline{T}'}$ T'& WeakRow ( ), [n]) Prop 13: Let NIMI- N Man (h,m) =# ) nxn matrices | Sum of column: column: sum of column: sum of partices | Sum of column: sum of column: sum of partices | Sum of column: sum of column: sum of partices | Sum of column: sum of column: sum of partices | Sum of column: sum of Pf: By def  $h_{\lambda}(x_n) = 2 M_{\lambda u}(h, m) M_{u}(x_n)$ 134'c-d' remark, Manchim) is the coefficient of the monomial = XM:.. XMn

Weak Roy ( ), End) = Sym 重: 干 ) (q; = # of i's) · Zaij = Hofis (0 2000) in all rows 0 0 000 · Zaij - number of boxes in row ) 司重(T) CSNU. 更is invertible b/c Weakly increasing makes filling unique. -Lemmy 12 => M \(\lambda(h,m) = \) Weak(Rony(\lambda,\text{En)}) \\
writes \(h\)(\text{Xn}) \\
as a sum of monomials \\
as a sum of monomials

|      | natorics :       | 2<br>11:18 AM   |                 |                 |                 |      |
|------|------------------|-----------------|-----------------|-----------------|-----------------|------|
| Cor  | 14:              | $M_{\lambda M}$ | (h,m)-          | $= M_{\lambda}$ | $1\lambda(h,m)$ |      |
| Pf:  | $ \S_{\lambda} $ | u \ -           | =   Sm.         | ) t             | Prop 13         | 3    |
|      | Ì                | } \-            | $\rightarrow A$ | r is            | abiject         | tion |
| Upsh | ot;              | Ne ju           | ist us          | ed Cor          | mbinaturi       | LS   |
| to   | 61 or            | ear             | .on-trivi       | il al           | g fac           |      |

Combinatorics Algebra · casier to compute · easier to prove things thing 5 (proofs in combinatics are ( computations in algebra are abstract) ad-hoclon the spot) Sym C Algebraic Combinatorics (best of both funct - Algebraic Combinatorics worlds)



