Monomial and Elementary Symmetric Functions
 Tuan Dolmen

Spring 2023

1 The Monomial Symmetric Polynomials

Construction of a monomial symmetric polynomial:

- Pick a set of variables x_{1}, \ldots, x_{n}
- Pick a monomial in these variables (e.g. $x_{\alpha}^{3} x_{\beta}$)
- Construct a monomial symmetric polynomial by adding all of the distinct combinations of vaiables of the monomial we chose.

Example 1.1. Find $h \in \Lambda\left(X_{2}\right)$ that includes $x_{1}^{4} x_{2}$
This polynomial must be invariant under:

$$
(12) \longrightarrow x_{2}^{4} x_{1}, \quad(1)(2) \longrightarrow x_{1}^{4} x_{2}
$$

Hence, we get the following polynomial:

$$
h\left(x_{1}, x_{2}\right)=x_{1}^{4} x_{2}+x_{2}^{4} x_{1}
$$

Example 1.2. Find $f \in \Lambda\left(X_{3}\right)$ that includes $x_{1}^{3} x_{2}$
This polynomial must be invariant under:
$(12) \longrightarrow x_{2}^{3} x_{1}$,
$(23) \longrightarrow x_{1}^{3} x_{3}$,
$(13) \longrightarrow x_{3}^{3} x_{2}$,
$(123) \longrightarrow x_{2}^{3} x_{3}$,
$(132) \longrightarrow x_{3}^{3} x_{1}$,
$(1)(2)(3) \longrightarrow x_{1}^{3} x_{2}$

Hence, we get the following polynomial:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3} x_{2}+x_{1}^{3} x_{3}+x_{2}^{3} x_{1}+x_{2}^{3} x_{3}+x_{3}^{3} x_{1}+x_{3}^{3} x_{2}
$$

Example 1.3. Find $g \in \Lambda\left(X_{3}\right)$ that includes $3 x_{1}^{2} x_{2} x_{3}^{2}$
This polynomial must be invariant under:

$$
(12) \longrightarrow 3 x_{2}^{2} x_{1} x_{3}^{2}, \quad(13) \longrightarrow 3 x_{3}^{2} x_{2} x_{1}^{2}, \quad \underset{(1)(2)(3) \longrightarrow 3 x_{1}^{2} x_{3} x_{2}^{2},}{(23)} \quad(123) \longrightarrow 3 x_{1}^{2} x_{2} x_{3}^{2} x_{3} x_{1}^{2}, \quad(132) \longrightarrow 3 x_{3}^{2} x_{1} x_{2}^{2},
$$

We see that there are some terms that simply duplicates, which we do not need. Hence, we get the following polynomial:

$$
g\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2} x_{2} x_{3}^{2}+3 x_{1}^{2} x_{3} x_{2}^{2}+3 x_{2}^{2} x_{1} x_{3}^{2}
$$

Definition 1.4. (Partition) $\forall n \in \mathbb{Z}_{\geq 0}$, a partition of n is a weakly decreasing (i.e. $\lambda_{n} \geq \lambda_{n+1}$) sequence $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$ of nonnegative integers such that $\sum_{j=1}^{\infty} \lambda_{j}=n$. If λ is a partition of n, we write " $\lambda \vdash n "$ and $|\lambda|=n$.

Now, we make an important observation: $x_{1}^{3} x_{2}$ and $x_{3}^{3} x_{1}$ give the same polynomial

$$
x_{1}^{3} x_{2}+x_{1}^{3} x_{3}+x_{2}^{3} x_{1}+x_{2}^{3} x_{3}+x_{3}^{3} x_{1}+x_{3}^{3} x_{2}
$$

From this observation, we can infer that we can rearrange the factors in our monomial to ensure that when we list the variables in the order x_{1}, \ldots, x_{n} that exponents form a partition. This provides the motivation for the following definition.

Definition. 1.5. Suppose $n \geq 1$ and λ is a partition of n. Then the monomial symmetric polynomial $m_{\lambda}\left(X_{n}\right)$ indexed by λ is the sum of the monomial $\prod_{j=1}^{l(\lambda)} x_{j}^{\lambda_{j}}$ and all of its distinct images under the elements of S_{n}. Note that $l(\lambda)$ is the length of the partition. Here, we take $x_{j}=0$ for all $j>n$, so if $l(\lambda)>n$, then $m_{\lambda}\left(X_{n}\right)=0$. This is a fancy way of saying "if there are more exponents in a monomial than the number of variables" then polynomial has to be zero. We also denote $m_{4,4,3,1}\left(X_{n}\right) \longrightarrow " m_{4431}\left(X_{n}\right) "$

Examples 1.6.

- $m_{21}\left(X_{2}\right)=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}$
- $m_{21}\left(X_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}+x_{3}^{2} x_{2}$
- $m_{3311}\left(X_{3}\right)=0$ since $l(\lambda)=4>3=n$
- $m_{3311}\left(X_{4}\right)=x_{1}^{3} x_{2}^{3} x_{3} x_{4}+x_{1}^{3} x_{3}^{3} x_{2} x_{4}+x_{1}^{3} x_{4}^{3} x_{2} x_{3}+x_{2}^{3} x_{3}^{3} x_{1} x_{4}+x_{2}^{3} x_{4}^{3} x_{1} x_{3}+x_{3}^{3} x_{4}^{3} x_{1} x_{2}$

Proposition 1.7. $\forall n \in \mathbb{Z}_{>0}, \forall \lambda$ the polynomial $m_{\lambda}\left(X_{n}\right)$ is a symmetric polynomial in x_{1}, \ldots, x_{n}
Proof of proposition. There are two cases:
Case 1. $n<l(\lambda)$, then by definition $m_{\lambda}\left(X_{n}\right)=0$ which is obviously a symmetric polynomial.
Case 2. $n \geq l(\lambda)$.
Lemma 1.8. Every permutation is a product of adjacent transpositions.
Proof of lemma. Since every permutation is a product of disjoint cycles, it is sufficient to show that every transposition is a product of adjacent transpositions. If $a_{1}<a_{2}$, then

$$
\begin{gathered}
\left(a_{1} a_{2}\right)=\alpha \beta \\
\alpha=\left(a_{1}, a_{1}+1\right)\left(a_{1}+1, a_{1}+2\right) \ldots\left(a_{2}-1, a_{2}\right) \\
\beta=\left(a_{2}-1, a_{2}-2\right)\left(a_{2}-2, a_{2}-3\right) \ldots\left(a_{1}+1, a+1\right)
\end{gathered}
$$

This proves the lemma.
With this lemma it suffices to show that $\sigma_{j}\left(m_{\lambda}\left(X_{n}\right)\right)=m_{\lambda}\left(X_{n}\right), 1 \leq j \leq n-1$, where σ_{j} is $(j, j+1)$. We want to show that every term $x_{1}^{\mu_{1}} \ldots x_{n}^{\mu_{n}}$ has the same coefficient in $\sigma_{j}\left(m_{\lambda}\left(X_{n}\right)\right)$ as in $m_{\lambda}\left(X_{n}\right)$. Now, we observe that the coefficient of $x_{1}^{\mu_{1}} \ldots x_{n}^{\mu_{n}}$ in $m_{\lambda}\left(X_{n}\right)$ is 1 if μ_{1}, \ldots, μ_{n} is a reordering of λ and 0 otherwise. Hence, we see that if the coefficient of $x_{1}^{\mu_{1}} \ldots x_{j}^{\mu_{j}} x_{j+1}^{\mu_{j+1}} \ldots x_{n}^{\mu_{n}}$ is 1 , then the coefficient of $x_{1}^{\mu_{1}} \ldots x_{j+1}^{\mu_{j}} x_{j}^{\mu_{j+1}} \ldots x_{n}^{\mu_{n}}$ is 1 and vice versa. This proves proposition 1.7.

Remark 1.9. If $\lambda \vdash k$, then the monomial symmetric polynomial $m_{\lambda}\left(X_{n}\right)$ is homogeneous of degree k, so $m_{\lambda}\left(X_{n}\right) \in \Lambda_{k}\left(X_{n}\right)$.

Remark 1.10. Homogeneous: $x^{5}+2 x^{3} y^{2}+9 x y^{4}$, Non-homogeneous: $x^{3}+3 x^{2} y^{4}+z^{7}$
Proposition 1.11. If $n \geq 1, k \geq 0$, and $n \geq k$, then the set

$$
\left\{m_{\lambda}\left(X_{n}\right): \lambda \vdash k\right\}
$$

of monomial symmetric polynomials is a basis for $\Lambda_{k}\left(X_{n}\right)$. In particular, $\operatorname{dim} \Lambda_{k}\left(X_{n}\right)=p(k)$, the number of partitions of k.

Proof of proposition. To prove that the given set is a basis, it suffices to check two things: linear independence, and span.

Linear Independence: First, observe that if λ and μ are partitions with $\lambda \neq \mu$, then $m_{\lambda}\left(X_{n}\right)$ and $m_{\mu}\left(X_{n}\right)$ have
no terms in common. Therefore, since each $m_{\lambda}\left(X_{n}\right)$ is nonzero, $\sum_{\lambda \vdash k} a_{\lambda} m_{\lambda}\left(X_{n}\right)=0$ can only occur if $a_{\lambda}=0$ for all $\lambda \vdash k$. Hence, $\left\{m_{\lambda}\left(X_{n}\right): \lambda \vdash k\right\}$ is linearly independent.

Span: Suppose $f \in \Lambda_{k}\left(X_{n}\right)$. If $f=0$, then $f=\sum_{\lambda \vdash k} 0 \cdot m_{\lambda}\left(X_{n}\right)$, so suppose $f \neq 0$. Now, argue by induction on the number of terms of $f . f$ has a term of the form $\alpha \prod_{j=1}^{n} x_{j}^{\mu_{j}}$ for some $\mu \vdash k$ and some constant α. Then $f-\alpha m_{\mu}\left(X_{n}\right) \in \Lambda_{k}\left(X_{n}\right)$ and $f-\alpha m_{\mu}\left(X_{n}\right)$ has fewer terms than f. By induction, $f-\alpha m_{\mu}\left(X_{n}\right)$ is a linear combination of the elements of $\left\{m_{\lambda}\left(X_{n}\right): \lambda \vdash k\right\}$, and thus f is as well.

There is exactly one monomial symmetric polynomial in $\Lambda_{k}\left(X_{n}\right)$ for each partition of k, which yields dim $\Lambda_{k}\left(X_{n}\right)=$ $p(k)$.

2 The Elementary Symmetric Functions

Motivation: Suppose we have a polynomial $f(z)$ with 1 as the leading coefficient (monic) and roots x_{1}, \ldots, x_{n}. Then we can express f as

$$
f(z)=\left(z-x_{1}\right)\left(z-x_{2}\right) \ldots\left(z-x_{n}\right)
$$

Notice that permuting x_{i} does not change f and if we expand f we get that the coefficient of z^{k} is a symmetric polynomial in x_{1}, \ldots, x_{n}. More specifically, for any k with $0 \leq k \leq n$, the coefficient of z^{n-k} is the sum of all products of exactly k distinct x_{j} 's up to sign. This is the elementary symmetric polynomial of degree k in x_{1}, \ldots, x_{n}.

Definition 2.2. $\forall n, k \in \mathbb{Z}_{>0}$, the elementary symmetric polynomial $e_{k}\left(X_{n}\right)$ is given by

$$
e_{k}\left(X_{n}\right)=\sum_{1 \leq j_{1}<\ldots<j_{k} \leq n} \prod_{m=1}^{k} x_{j_{m}}=\sum_{\substack{J \subseteq[n] \\|J|=k}} \prod_{j \in J} x_{j}
$$

while the elementary symmetric function e_{k} is given by

$$
e_{k}=\sum_{\substack{J \subseteq \mathbb{Z}_{>0} \\|\bar{J}|=k}} \prod_{j \in J} x_{j}
$$

By convention $e_{0}\left(X_{n}\right)=1$ and $e_{0}=1$, and if $n<k$, then $e_{k}\left(X_{n}\right)=0$.
Remark 2.3. $(-1)^{k} e_{k}\left(X_{n}\right)$ is the coefficient of z^{n-k} in the polynomial $\left(z-x_{1}\right) \ldots\left(z-x_{n}\right)$.
Definition 2.4. Suppose $n \geq 1$ and λ is a partition. Then the elementary symmetric polynomial indexed by λ, $e_{\lambda}\left(X_{n}\right)$, is given by

$$
e_{\lambda}\left(X_{n}\right)=\prod_{j=1}^{l(\lambda)} e_{\lambda_{j}}\left(X_{n}\right)
$$

Similarly, the elementary symmetric function indexed by λ, e_{λ}, is given by

$$
e_{\lambda}=\prod_{j=1}^{l(\lambda)} e_{\lambda_{j}}
$$

Also, note that if $n<\lambda_{1}$, then $e_{\lambda}\left(X_{n}\right)=0$.
$\forall n \geq k \geq 1$, we can write $e_{k}\left(X_{n}\right)$ as a linear combination of monomial symmetric polynomials, and then write e_{k} as a linear combination of monomial symmetric functions.

Example 2.5. Write $e_{21}\left(X_{3}\right), e_{21}\left(X_{4}\right)$, and $e_{21}\left(X_{5}\right)$ as linear combinations of monomial symmetric polynomials, and then write e_{21} as linear combination of monomial symmetric functions.

We get

- $e_{21}\left(X_{3}\right)=\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)\left(x_{1}+x_{2}+x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}+$ $x_{1} x_{3}^{2}+x_{2} x_{3}^{2}=3 m_{111}\left(X_{3}\right)+m_{21}\left(X_{3}\right)$
- Similarly, $e_{21}\left(X_{4}\right)=3 m_{111}\left(X_{4}\right)+m_{21}\left(X_{4}\right)$
- And $e_{21}\left(X_{5}\right)=3 m_{111}\left(X_{5}\right)+m_{21}\left(X_{5}\right)$
- Hence, $e_{21}=3 m_{111}+m_{21}$

Remark 2.6. We will define the following notation: For any partitions λ and μ with $|\lambda|=|\mu|$ and for any $n \geq 1$, let $M_{\lambda, \mu, n}(e, m)$ be the rational number defined by

$$
e_{\lambda}\left(X_{n}\right)=\sum_{\mu \vdash|\lambda|} M_{\lambda, \mu, n}(e, m) m_{\mu}\left(X_{n}\right)
$$

Similarly, $M_{\lambda, \mu}(e, m)$ is the rational number defined by

$$
e_{\lambda}=\sum_{\mu \vdash|\lambda|} M_{\lambda, \mu}(e, m) m_{\mu}
$$

Proposition 2.7. For any partitions λ, μ with $|\lambda|=|\mu|$, if $n \geq|\lambda|$, then $M_{\lambda, \mu, n}(e, m)=M_{\lambda, \mu}(e, m)$. In particular, if $n \geq|\lambda|$, then $M_{\lambda, \mu, n}(e, m)$ is independent of n.

Proof of proposition. Set $k=l(\mu)$ and $l=l(\lambda)$. The coefficient $M_{\lambda, \mu}(e, m)$ is the coefficient of $x_{1}^{\mu_{1}} \ldots x_{k}^{\mu_{k}}$ in e_{λ}. If $n \geq|\lambda|$, then this coefficient is determined by those terms in $e_{\lambda_{1}}, \ldots, e_{\lambda_{l}}$, involving only x_{1}, \ldots, x_{k}. Since $k \leq|\lambda| \leq n$, the variables $x_{1}, \ldots, x_{k} \in\left\{x_{1}, \ldots, x_{n}\right\}$, and $M_{\lambda, \mu}(e, m)$ is determined by those terms in $e_{\lambda_{1}}, \ldots, e_{\lambda_{l}}$ involving only x_{1}, \ldots, x_{n}. This is also how $M_{\lambda, \mu, n}(e, m)$ is determined, so $M_{\lambda, \mu}(e, m)=M_{\lambda, \mu, n}(e, m)$

Remark 2.8. To make our work easier, we represent each term of e_{k} with a filling of a $1 \times k$ tile with distinct positive integers, in increasing order from left to right, corresponding to the subscripts of the factors in that term. For example, the term $x_{2} x_{3} x_{5} x_{7}$ corresponds to the filling of a 1×4 tile. By stacking and left-justifying these fillings, we can represent each term as a filling of the Ferrers diagram, in which the entries in each row are strictly increasing from left to right. e.g.

2			
1	4		
2	3	5	7

Figure 2.9. The filling corresponding to the product of $x_{2} x_{3} x_{5} x_{7}, x_{1} x_{4}$, and x_{2}
Similarly, for $\mu=\left(2^{2}, 1^{3}\right)$, the Ferrers diagram for $(4,2,1)$ becomes
"Do the example - write Ferrers diagram - Put 1s (2) and 2s (2)" - put 3,4,5 - count number of possibilities This gives the coefficient of m_{22111} in e_{421}, which is 11 .

Definition 2.10. Suppose λ and μ are partitions. We say λ is greater than μ in lexicographic order, and we write $\lambda>_{\text {lex }} \mu$, whenever there is a positive integer m such that $\lambda_{j}=\mu_{j}$ for $j<m$ and $\lambda_{m}>\mu_{m}$. Here we take $\lambda_{j}=0$ if $j>l(\lambda)$ and we take $\mu_{j}=0$ if $j>l(\mu)$.

Remark 2.11. This is very similar to the order we use for the alphabet.
Example 2.12. Write the partitions of 6 in lexicographic order, from largest to smallest.
$\Rightarrow(6)>_{\operatorname{lex}}(5,1)>_{\operatorname{lex}}(4,2)>_{\operatorname{lex}}\left(4,1^{2}\right)>_{\operatorname{lex}}\left(3^{2}\right)>_{\operatorname{lex}}(3,2,1)>_{\operatorname{lex}}\left(3,1^{3}\right)>_{\operatorname{lex}}\left(2^{3}\right)>_{\operatorname{lex}}\left(2^{2}, 1^{2}\right)>_{\operatorname{lex}}\left(2,1^{4}\right)>_{\operatorname{lex}}\left(1^{6}\right)$

Proposition 2.13. Suppose λ, μ are partitions with $|\lambda|=|\mu|$. Then
(i) if $\mu>_{\text {lex }} \lambda^{\prime}$ then $M_{\lambda, \mu}(e, m)=0$;
(ii) $M_{\lambda, \lambda^{\prime}}(e, m)=1$.

Proof of proposition. (i) We have

$$
e_{\lambda}=e_{\lambda_{1}} \ldots e_{\lambda_{l(\lambda)}}
$$

and we note that $M_{\lambda, \mu}(e, m)$ is the coefficient of $x_{1}^{\mu_{1}} \ldots x_{l(\mu)}^{\mu_{l(\mu)}}$ in this product. If $\mu>_{\text {lex }} \lambda^{\prime}$, then by definition there exists $m \geq 1$ such that $\mu_{m}>\lambda_{m}^{\prime}$ and $\mu_{j}=\lambda_{j}^{\prime}$ for $1 \leq j<m$. Each factor $e_{\lambda_{j}}$ can contribute at most one factor x_{1} to our term, so $\mu_{1}=\lambda_{1}^{\prime}$ implies each factor $e_{\lambda_{j}}$ contributes exactly one factor x_{1}. (This corresponds to filling the first column of the Ferrers diagram of λ with 1 's.) Similarly, only those $e_{\lambda_{j}}$ with $\lambda_{j} \geq 2$ can contribute a factor x_{2}, so each such $e_{\lambda_{j}}$ must contribute exactly one factor x_{2}. (This corresponds to filling the second column of the Ferrers diagram of λ with 2's.) Proceeding in this way, we see that only those $e_{\lambda_{j}}$ with $\lambda_{j} \geq m$ can contribute a factor x_{m} to our term, so the exponent on x_{m} is at most λ_{m}^{\prime}. Since $\mu_{m}>\lambda_{m}^{\prime}$, the term $x_{1}^{\mu_{1}} \ldots x_{l(\mu)}^{\mu_{l(\mu)}}$ does not appear in our product, and 1 the result follows.
(ii) Arguing as in the proof of (i), we see the only way to produce the term $x_{1}^{\lambda_{1}^{\prime}} \ldots x_{l\left(\lambda^{\prime}\right)}^{\lambda_{l\left(\lambda^{\prime}\right)}^{\prime}}$ is to choose the term $x_{1} \ldots x_{l\left(\lambda^{\prime}\right)} e_{\lambda_{j}}$ for all j. Now the result follows.

Remark 2.14. The converse is false.
Example 2.15. Write e_{31} as a linear combination of monomial symmetric functions.

- Assume x_{1}, \ldots, x_{4}
- Normally, $\binom{4}{3}\binom{4}{1}=16$ terms
- Use Ferrers, diagram $(3,1)$ and plug in $m_{1^{4}}, m_{2,1^{2}}, m_{2^{2}}, m_{31}$ to find the coefficients

Corollary 2.16. The set $\left\{e_{\lambda} \mid \lambda \vdash k\right\}$ of elementary symmetric functions is a basis for Λ_{k}.

Proof of corollary. Let A be the $p(k) \times p(k)$ matrix whose rows and columns are indexed by the partitions of k, in lexicographic order from smallest to largest, and whose entries are given by $A_{\lambda \mu}=M_{\lambda^{\prime}, \mu}(e, m)$. By the previous proposition, A is a lower triangular matrix whose diagonal entries are all equal to 1 , so $\operatorname{det} A=1$ and A is invertible. Since $e_{\lambda^{\prime}}=\sum_{\mu \vdash k} A_{\lambda \mu} m_{\mu}$, each monomial symmetric function m_{μ} is a linear combination of elementary symmetric functions, and $\left\{e_{\lambda} \mid \lambda \vdash k\right\}$ spans Λ_{k} by a previous proposition. But $\operatorname{dim} \Lambda_{k}=p(k)=\left|\left\{e_{\lambda} \mid \lambda \vdash k\right\}\right|$, so $\left\{e_{\lambda} \mid \lambda \vdash k\right\}$ must also be linearly independent. Therefore $\left\{e_{\lambda} \mid \lambda \vdash k\right\}$ is a basis, which is what we wanted to prove.

Fact 2.17. The following hold for all partitions $\lambda, \mu \vdash k$.
$M_{\lambda, \mu}(e, m)$ is the number of $k \times k$ matrices in which every entry is 0 or 1 ,the sum of the entries in row m is μ_{m} for all m, and the sum of the entries in column j is λ_{j} for all j.

Corollary 2.18. For all partitions $\lambda, \mu \vdash k$, we have

$$
M_{\lambda, \mu}(e, m)=M_{\mu, \lambda}(e, m)
$$

Proof of corollary. For any partitions $\lambda, \mu \vdash k$, let $B_{\lambda, \mu}$ be the set of $k \times k$ matrices in which every entry is 0 or 1 , the sum of the entries in row m is μ_{m} for all m, and the sum of the entries in column j is λ_{j} for all j. By the previous fact we have $\left|B_{\lambda, \mu}\right|=M_{\lambda, \mu}(e, m)$. The result follows from the fact that the transpose map is a bijection between $B_{\lambda, \mu}$ and $B_{\mu, \lambda}$.

Proposition 2.19. The ordinary generating function for the sequence $\left\{e_{n}\right\}_{n=0}^{\infty}$ of elementary symmetric functions is

$$
\sum_{n=0}^{\infty} e_{n} t^{n}=\prod_{j=1}^{\infty}\left(1+x_{j} t\right)
$$

We often write $E(t)$ to denote this generating function.
Proof of proposition. We can build each elementary symmetric function en uniquely by adding the terms which result from deciding, for each j, whether to include x_{j} as a factor or not. This matches our computation of the product on the right hand side of the equality: we construct each term by deciding, for each factor $1+x_{j} t$, whether to use 1 or $x_{j} t$ as a factor.

3 References

References

[1] Eric S. Egge (2019) An Introduction to Symmetric Functions and Their Combinatorics, American Mathematical Society

