Monomial and Elementary Symmetric Functions

Tuan Dolmen

Spring 2023

1 The Monomial Symmetric Polynomials

Construction of a monomial symmetric polynomial:

- Pick a set of variables $x_1, ..., x_n$
- Pick a monomial in these variables (e.g. $x_{\alpha}^3 x_{\beta}$)
- Construct a monomial symmetric polynomial by adding all of the distinct combinations of vaiables of the monomial we chose.

Example 1.1. Find $h \in \Lambda(X_2)$ that includes $x_1^4 x_2$

This polynomial must be invariant under:

$$(12) \longrightarrow x_2^4 x_1, \qquad (1)(2) \longrightarrow x_1^4 x_2$$

Hence, we get the following polynomial:

$$h(x_1, x_2) = x_1^4 x_2 + x_2^4 x_1$$

Example 1.2. Find $f \in \Lambda(X_3)$ that includes $x_1^3 x_2$

This polynomial must be invariant under:

 $(12) \longrightarrow x_2^3 x_1, \quad (23) \longrightarrow x_1^3 x_3, \quad (13) \longrightarrow x_3^3 x_2, \quad (123) \longrightarrow x_2^3 x_3, \quad (132) \longrightarrow x_3^3 x_1, \quad (1)(2)(3) \longrightarrow x_1^3 x_2$ Hence, we get the following polynomial:

$$f(x_1, x_2, x_3) = x_1^3 x_2 + x_1^3 x_3 + x_2^3 x_1 + x_2^3 x_3 + x_3^3 x_1 + x_3^3 x_2$$

Example 1.3. Find $g \in \Lambda(X_3)$ that includes $3x_1^2x_2x_3^2$

This polynomial must be invariant under:

We see that there are some terms that simply duplicates, which we do not need. Hence, we get the following polynomial:

$$g(x_1, x_2, x_3) = 3x_1^2 x_2 x_3^2 + 3x_1^2 x_3 x_2^2 + 3x_2^2 x_1 x_3^2$$

Definition 1.4. (Partition) $\forall n \in \mathbb{Z}_{\geq 0}$, a partition of n is a weakly decreasing (i.e. $\lambda_n \geq \lambda_{n+1}$) sequence $\{\lambda_j\}_{j=1}^{\infty}$ of nonnegative integers such that $\sum_{j=1}^{\infty} \lambda_j = n$. If λ is a partition of n, we write " $\lambda \vdash n$ " and $|\lambda| = n$.

Now, we make an important observation: $x_1^3x_2$ and $x_3^3x_1$ give the same polynomial

$$x_1^3x_2 + x_1^3x_3 + x_2^3x_1 + x_2^3x_3 + x_3^3x_1 + x_3^3x_2$$

From this observation, we can infer that we can rearrange the factors in our monomial to ensure that when we list the variables in the order $x_1, ..., x_n$ that exponents form a partition. This provides the motivation for the following definition.

Definition. 1.5. Suppose $n \ge 1$ and λ is a partition of n. Then the monomial symmetric polynomial $m_{\lambda}(X_n)$ indexed by λ is the sum of the monomial $\prod_{j=1}^{l(\lambda)} x_j^{\lambda_j}$ and all of its distinct images under the elements of S_n . Note that $l(\lambda)$ is the length of the partition. Here, we take $x_j = 0$ for all j > n, so if $l(\lambda) > n$, then $m_{\lambda}(X_n) = 0$. This is a fancy way of saying "if there are more exponents in a monomial than the number of variables" then polynomial has to be zero. We also denote $m_{4,4,3,1}(X_n) \longrightarrow "m_{4431}(X_n)$ "

Examples 1.6.

- $m_{21}(X_2) = x_1^2 x_2 + x_2^2 x_1$
- $m_{21}(X_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1 + x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2$
- $m_{3311}(X_3) = 0$ since $l(\lambda) = 4 > 3 = n$
- $m_{3311}(X_4) = x_1^3 x_2^3 x_3 x_4 + x_1^3 x_3^3 x_2 x_4 + x_1^3 x_4^3 x_2 x_3 + x_2^3 x_3^3 x_1 x_4 + x_2^3 x_4^3 x_1 x_3 + x_3^3 x_4^3 x_1 x_2$

Proposition 1.7. $\forall n \in \mathbb{Z}_{>0}, \forall \lambda$ the polynomial $m_{\lambda}(X_n)$ is a symmetric polynomial in $x_1, ..., x_n$

Proof of proposition. There are two cases:

Case 1. $n < l(\lambda)$, then by definition $m_{\lambda}(X_n) = 0$ which is obviously a symmetric polynomial. Case 2. $n \ge l(\lambda)$.

Lemma 1.8. Every permutation is a product of adjacent transpositions.

Proof of lemma. Since every permutation is a product of disjoint cycles, it is sufficient to show that every transposition is a product of adjacent transpositions. If $a_1 < a_2$, then

$$(a_1 \ a_2) = \alpha\beta$$

$$\alpha = (a_1, a_1 + 1)(a_1 + 1, a_1 + 2)...(a_2 - 1, a_2)$$

$$\beta = (a_2 - 1, a_2 - 2)(a_2 - 2, a_2 - 3)...(a_1 + 1, a_1 + 1)$$

This proves the lemma. $\hfill \Box$

With this lemma it suffices to show that $\sigma_j(m_\lambda(X_n)) = m_\lambda(X_n)$, $1 \le j \le n-1$, where σ_j is (j, j+1). We want to show that every term $x_1^{\mu_1}...x_n^{\mu_n}$ has the same coefficient in $\sigma_j(m_\lambda(X_n))$ as in $m_\lambda(X_n)$. Now, we observe that the coefficient of $x_1^{\mu_1}...x_j^{\mu_n}$ in $m_\lambda(X_n)$ is 1 if $\mu_1, ..., \mu_n$ is a reordering of λ and 0 otherwise. Hence, we see that if the coefficient of $x_1^{\mu_1}...x_j^{\mu_j}x_{j+1}^{\mu_{j+1}}...x_n^{\mu_n}$ is 1, then the coefficient of $x_1^{\mu_1}...x_{j+1}^{\mu_j}x_j^{\mu_{j+1}}...x_n^{\mu_n}$ is 1 and vice versa. This proves proposition 1.7. \Box

Remark 1.9. If $\lambda \vdash k$, then the monomial symmetric polynomial $m_{\lambda}(X_n)$ is homogeneous of degree k, so $m_{\lambda}(X_n) \in \Lambda_k(X_n)$.

Remark 1.10. Homogeneous: $x^5 + 2x^3y^2 + 9xy^4$, Non-homogeneous: $x^3 + 3x^2y^4 + z^7$

Proposition 1.11. If $n \ge 1$, $k \ge 0$, and $n \ge k$, then the set

$$[m_{\lambda}(X_n): \lambda \vdash k\}$$

of monomial symmetric polynomials is a basis for $\Lambda_k(X_n)$. In particular, dim $\Lambda_k(X_n) = p(k)$, the number of partitions of k.

Proof of proposition. To prove that the given set is a basis, it suffices to check two things: linear independence, and span.

Linear Independence: First, observe that if λ and μ are partitions with $\lambda \neq \mu$, then $m_{\lambda}(X_n)$ and $m_{\mu}(X_n)$ have

no terms in common. Therefore, since each $m_{\lambda}(X_n)$ is nonzero, $\sum_{\lambda \vdash k} a_{\lambda} m_{\lambda}(X_n) = 0$ can only occur if $a_{\lambda} = 0$ for all $\lambda \vdash k$. Hence, $\{m_{\lambda}(X_n) : \lambda \vdash k\}$ is linearly independent.

Span: Suppose $f \in \Lambda_k(X_n)$. If f = 0, then $f = \sum_{\lambda \vdash k} 0 \cdot m_\lambda(X_n)$, so suppose $f \neq 0$. Now, argue by induction on the number of terms of f. f has a term of the form $\alpha \prod_{j=1}^n x_j^{\mu_j}$ for some $\mu \vdash k$ and some constant α . Then $f - \alpha m_\mu(X_n) \in \Lambda_k(X_n)$ and $f - \alpha m_\mu(X_n)$ has fewer terms than f. By induction, $f - \alpha m_\mu(X_n)$ is a linear combination of the elements of $\{m_\lambda(X_n) : \lambda \vdash k\}$, and thus f is as well.

There is exactly one monomial symmetric polynomial in $\Lambda_k(X_n)$ for each partition of k, which yields dim $\Lambda_k(X_n) = p(k)$. \Box

2 The Elementary Symmetric Functions

Motivation: Suppose we have a polynomial f(z) with 1 as the leading coefficient (monic) and roots $x_1, ..., x_n$. Then we can express f as

$$f(z) = (z - x_1)(z - x_2)...(z - x_n)$$

Notice that permuting x_i does not change f and if we expand f we get that the coefficient of z^k is a symmetric polynomial in $x_1, ..., x_n$. More specifically, for any k with $0 \le k \le n$, the coefficient of z^{n-k} is the sum of all products of exactly k distinct x_j 's up to sign. This is the elementary symmetric polynomial of degree k in $x_1, ..., x_n$.

Definition 2.2. $\forall n, k \in \mathbb{Z}_{>0}$, the elementary symmetric polynomial $e_k(X_n)$ is given by

$$e_k(X_n) = \sum_{1 \le j_1 < \dots < j_k \le n} \prod_{m=1}^k x_{j_m} = \sum_{\substack{J \subseteq [n] \\ |J| = k}} \prod_{j \in J} x_j$$

while the elementary symmetric function e_k is given by

$$e_k = \sum_{\substack{J \subseteq \mathbb{Z}_{>0} \\ |J|=k}} \prod_{j \in J} x_j$$

By convention $e_0(X_n) = 1$ and $e_0 = 1$, and if n < k, then $e_k(X_n) = 0$.

Remark 2.3. $(-1)^k e_k(X_n)$ is the coefficient of z^{n-k} in the polynomial $(z-x_1)...(z-x_n)$.

Definition 2.4. Suppose $n \ge 1$ and λ is a partition. Then the elementary symmetric polynomial indexed by λ , $e_{\lambda}(X_n)$, is given by

$$e_{\lambda}(X_n) = \prod_{j=1}^{l(\lambda)} e_{\lambda_j}(X_n)$$

Similarly, the elementary symmetric function indexed by λ , e_{λ} , is given by

$$e_{\lambda} = \prod_{j=1}^{l(\lambda)} e_{\lambda_j}$$

Also, note that if $n < \lambda_1$, then $e_{\lambda}(X_n) = 0$.

 $\forall n \geq k \geq 1$, we can write $e_k(X_n)$ as a linear combination of monomial symmetric polynomials, and then write e_k as a linear combination of monomial symmetric functions.

Example 2.5. Write $e_{21}(X_3)$, $e_{21}(X_4)$, and $e_{21}(X_5)$ as linear combinations of monomial symmetric polynomials, and then write e_{21} as linear combination of monomial symmetric functions.

We get

• $e_{21}(X_3) = (x_1x_2 + x_1x_3 + x_2x_3)(x_1 + x_2 + x_3) = x_1^2x_2 + x_1^2x_3 + x_1x_2x_3 + x_1x_2^2 + x_1x_2x_3 + x_2^2x_3 + x_1x_2x_3 + x_1x_2x_3 + x_1x_2x_3 + x_2x_3 + x_2x_3 + x_1x_2x_3 + x_2x_3 + x_2$

- Similarly, $e_{21}(X_4) = 3m_{111}(X_4) + m_{21}(X_4)$
- And $e_{21}(X_5) = 3m_{111}(X_5) + m_{21}(X_5)$
- Hence, $e_{21} = 3m_{111} + m_{21}$

Remark 2.6. We will define the following notation: For any partitions λ and μ with $|\lambda| = |\mu|$ and for any $n \ge 1$, let $M_{\lambda,\mu,n}(e,m)$ be the rational number defined by

$$e_{\lambda}(X_n) = \sum_{\mu \vdash |\lambda|} M_{\lambda,\mu,n}(e,m) m_{\mu}(X_n)$$

Similarly, $M_{\lambda,\mu}(e,m)$ is the rational number defined by

$$e_{\lambda} = \sum_{\mu \vdash |\lambda|} M_{\lambda,\mu}(e,m) m_{\mu}$$

Proposition 2.7. For any partitions λ , μ with $|\lambda| = |\mu|$, if $n \ge |\lambda|$, then $M_{\lambda,\mu,n}(e,m) = M_{\lambda,\mu}(e,m)$. In particular, if $n \ge |\lambda|$, then $M_{\lambda,\mu,n}(e,m)$ is independent of n.

Proof of proposition. Set $k = l(\mu)$ and $l = l(\lambda)$. The coefficient $M_{\lambda,\mu}(e,m)$ is the coefficient of $x_1^{\mu_1}...x_k^{\mu_k}$ in e_{λ} . If $n \geq |\lambda|$, then this coefficient is determined by those terms in $e_{\lambda_1}, ..., e_{\lambda_l}$, involving only $x_1, ..., x_k$. Since $k \leq |\lambda| \leq n$, the variables $x_1, ..., x_k \in \{x_1, ..., x_n\}$, and $M_{\lambda,\mu}(e,m)$ is determined by those terms in $e_{\lambda_1}, ..., e_{\lambda_l}$, involving only $x_1, ..., x_k$. Since $i \leq |\lambda| \leq n$, the variables $x_1, ..., x_k \in \{x_1, ..., x_n\}$, and $M_{\lambda,\mu}(e,m)$ is determined by those terms in $e_{\lambda_1}, ..., e_{\lambda_l}$ involving only $x_1, ..., x_n$. This is also how $M_{\lambda,\mu,n}(e,m)$ is determined, so $M_{\lambda,\mu}(e,m) = M_{\lambda,\mu,n}(e,m)$

Remark 2.8. To make our work easier, we represent each term of e_k with a filling of a $1 \times k$ tile with distinct positive integers, in increasing order from left to right, corresponding to the subscripts of the factors in that term. For example, the term $x_2x_3x_5x_7$ corresponds to the filling of a 1×4 tile. By stacking and left-justifying these fillings, we can represent each term as a filling of the Ferrers diagram, in which the entries in each row are strictly increasing from left to right. e.g.

2			
1	4		
2	3	5	7

Figure 2.9. The filling corresponding to the product of $x_2x_3x_5x_7$, x_1x_4 , and x_2

Similarly, for $\mu = (2^2, 1^3)$, the Ferrers diagram for (4, 2, 1) becomes

"Do the example - write Ferrers diagram - Put 1s (2) and 2s (2)" - put 3,4,5 - count number of possibilities

This gives the coefficient of m_{22111} in e_{421} , which is 11.

Definition 2.10. Suppose λ and μ are partitions. We say λ is greater than μ in lexicographic order, and we write $\lambda >_{\text{lex}} \mu$, whenever there is a positive integer m such that $\lambda_j = \mu_j$ for j < m and $\lambda_m > \mu_m$. Here we take $\lambda_j = 0$ if $j > l(\lambda)$ and we take $\mu_j = 0$ if $j > l(\mu)$.

Remark 2.11. This is very similar to the order we use for the alphabet.

Example 2.12. Write the partitions of 6 in lexicographic order, from largest to smallest.

$$\Rightarrow (6) >_{\text{lex}} (5,1) >_{\text{lex}} (4,2) >_{\text{lex}} (4,1^2) >_{\text{lex}} (3^2) >_{\text{lex}} (3,2,1) >_{\text{lex}} (3,1^3) >_{\text{lex}} (2^3) >_{\text{lex}} (2^2,1^2) >_{\text{lex}} (2,1^4) >_{\text{lex}} (1^6)$$

Proposition 2.13. Suppose λ, μ are partitions with $|\lambda| = |\mu|$. Then

(i) if $\mu >_{\text{lex}} \lambda'$ then $M_{\lambda,\mu}(e,m) = 0$;

(ii) $M_{\lambda,\lambda'}(e,m) = 1.$

Proof of proposition. (i) We have

$$e_{\lambda} = e_{\lambda_1} \dots e_{\lambda_{l(\lambda)}}$$

and we note that $M_{\lambda,\mu}(e,m)$ is the coefficient of $x_1^{\mu_1}...x_{l(\mu)}^{\mu_{l(\mu)}}$ in this product. If $\mu >_{\text{lex}} \lambda'$, then by definition there exists $m \ge 1$ such that $\mu_m > \lambda'_m$ and $\mu_j = \lambda'_j$ for $1 \le j < m$. Each factor e_{λ_j} can contribute at most one factor x_1 to our term, so $\mu_1 = \lambda'_1$ implies each factor e_{λ_j} contributes exactly one factor x_1 . (This corresponds to filling the first column of the Ferrers diagram of λ with 1's.) Similarly, only those e_{λ_j} with $\lambda_j \ge 2$ can contribute a factor x_2 , so each such e_{λ_j} must contribute exactly one factor x_2 . (This corresponds to filling the second column of the Ferrers diagram of λ with 2's.) Proceeding in this way, we see that only those e_{λ_j} with $\lambda_j \ge m$ can contribute a factor x_m to our term, so the exponent on x_m is at most λ'_m . Since $\mu_m > \lambda'_m$, the term $x_1^{\mu_1}...x_{l(\mu)}^{\mu_{l(\mu)}}$ does not appear in our product, and 1 the result follows.

(ii) Arguing as in the proof of (i), we see the only way to produce the term $x_1^{\lambda'_1} \dots x_{l(\lambda')}^{\lambda'_{l(\lambda')}}$ is to choose the term $x_1 \dots x_{l(\lambda')}$ for all j. Now the result follows. \Box

Remark 2.14. The converse is false.

Example 2.15. Write e_{31} as a linear combination of monomial symmetric functions.

- Assume x_1, \dots, x_4
- Normally, $\begin{pmatrix} 4\\ 3 \end{pmatrix} \begin{pmatrix} 4\\ 1 \end{pmatrix} = 16$ terms
- Use Ferrers, diagram (3,1) and plug in m_{1^4} , $m_{2,1^2}$, m_{2^2} , m_{31} to find the coefficients

Corollary 2.16. The set $\{e_{\lambda} | \lambda \vdash k\}$ of elementary symmetric functions is a basis for Λ_k .

Proof of corollary. Let A be the $p(k) \times p(k)$ matrix whose rows and columns are indexed by the partitions of k, in lexicographic order from smallest to largest, and whose entries are given by $A_{\lambda\mu} = M_{\lambda',\mu}(e,m)$. By the previous proposition, A is a lower triangular matrix whose diagonal entries are all equal to 1, so det A = 1 and A is invertible. Since $e_{\lambda'} = \sum_{\mu \vdash k} A_{\lambda\mu} m_{\mu}$, each monomial symmetric function m_{μ} is a linear combination of elementary symmetric functions, and $\{e_{\lambda} | \lambda \vdash k\}$ spans Λ_k by a previous proposition. But dim $\Lambda_k = p(k) = |\{e_{\lambda} | \lambda \vdash k\}|$, so $\{e_{\lambda} | \lambda \vdash k\}$ must also be linearly independent. Therefore $\{e_{\lambda} | \lambda \vdash k\}$ is a basis, which is what we wanted to prove. \Box

Fact 2.17. The following hold for all partitions $\lambda, \mu \vdash k$.

 $M_{\lambda,\mu}(e,m)$ is the number of $k \times k$ matrices in which every entry is 0 or 1, the sum of the entries in row m is μ_m for all m, and the sum of the entries in column j is λ_j for all j.

Corollary 2.18. For all partitions $\lambda, \mu \vdash k$, we have

$$M_{\lambda,\mu}(e,m) = M_{\mu,\lambda}(e,m)$$

Proof of corollary. For any partitions $\lambda, \mu \vdash k$, let $B_{\lambda,\mu}$ be the set of $k \times k$ matrices in which every entry is 0 or 1, the sum of the entries in row m is μ_m for all m, and the sum of the entries in column j is λ_j for all j. By the previous fact we have $|B_{\lambda,\mu}| = M_{\lambda,\mu}(e,m)$. The result follows from the fact that the transpose map is a bijection between $B_{\lambda,\mu}$ and $B_{\mu,\lambda}$. \Box

Proposition 2.19. The ordinary generating function for the sequence $\{e_n\}_{n=0}^{\infty}$ of elementary symmetric functions is

$$\sum_{n=0}^{\infty} e_n t^n = \prod_{j=1}^{\infty} (1+x_j t)$$

We often write E(t) to denote this generating function.

Proof of proposition. We can build each elementary symmetric function en uniquely by adding the terms which result from deciding, for each j, whether to include x_j as a factor or not. This matches our computation of the product on the right hand side of the equality: we construct each term by deciding, for each factor $1 + x_j t$, whether to use 1 or $x_j t$ as a factor. \Box

3 References

References

[1] Eric S. Egge (2019) An Introduction to Symmetric Functions and Their Combinatorics, American Mathematical Society