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1 The Monomial Symmetric Polynomials

Construction of a monomial symmetric polynomial:

• Pick a set of variables x1, ..., xn

• Pick a monomial in these variables (e.g. x3
αxβ)

• Construct a monomial symmetric polynomial by adding all of the distinct combinations of vaiables of the
monomial we chose.

Example 1.1. Find h ∈ Λ(X2) that includes x
4
1x2

This polynomial must be invariant under:

(12) −→ x4
2x1, (1)(2) −→ x4

1x2

Hence, we get the following polynomial:

h(x1, x2) = x4
1x2 + x4

2x1

Example 1.2. Find f ∈ Λ(X3) that includes x
3
1x2

This polynomial must be invariant under:

(12) −→ x3
2x1, (23) −→ x3

1x3, (13) −→ x3
3x2, (123) −→ x3

2x3, (132) −→ x3
3x1, (1)(2)(3) −→ x3

1x2

Hence, we get the following polynomial:

f(x1, x2, x3) = x3
1x2 + x3

1x3 + x3
2x1 + x3

2x3 + x3
3x1 + x3

3x2

Example 1.3. Find g ∈ Λ(X3) that includes 3x
2
1x2x

2
3

This polynomial must be invariant under:

(12) −→ 3x2
2x1x

2
3, (13) −→ 3x2

3x2x
2
1, (23) −→ 3x2

1x3x
2
2, (123) −→ 3x2

2x3x
2
1, (132) −→ 3x2

3x1x
2
2,

(1)(2)(3) −→ 3x2
1x2x

2
3

We see that there are some terms that simply duplicates, which we do not need. Hence, we get the following
polynomial:

g(x1, x2, x3) = 3x2
1x2x

2
3 + 3x2

1x3x
2
2 + 3x2

2x1x
2
3

Definition 1.4. (Partition) ∀n ∈ Z≥0, a partition of n is a weakly decreasing (i.e. λn ≥ λn+1) sequence {λj}∞j=1

of nonnegative integers such that
∑∞

j=1 λj = n. If λ is a partition of n, we write ”λ ⊢ n” and |λ| = n.

Now, we make an important observation: x3
1x2 and x3

3x1 give the same polynomial
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x3
1x2 + x3

1x3 + x3
2x1 + x3

2x3 + x3
3x1 + x3

3x2

From this observation, we can infer that we can rearrange the factors in our monomial to ensure that when we list
the variables in the order x1, ..., xn that exponents form a partition. This provides the motivation for the following
definition.

Definition. 1.5. Suppose n ≥ 1 and λ is a partition of n. Then the monomial symmetric polynomial mλ(Xn) indexed

by λ is the sum of the monomial
∏l(λ)

j=1 x
λj

j and all of its distinct images under the elements of Sn. Note that l(λ) is
the length of the partition. Here, we take xj = 0 for all j > n, so if l(λ) > n, then mλ(Xn) = 0. This is a fancy way
of saying ”if there are more exponents in a monomial than the number of variables” then polynomial has to be zero.
We also denote m4,4,3,1(Xn) −→ ”m4431(Xn)”

Examples 1.6.

• m21(X2) = x2
1x2 + x2

2x1

• m21(X3) = x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + x2
3x1 + x2

3x2

• m3311(X3) = 0 since l(λ) = 4 > 3 = n

• m3311(X4) = x3
1x

3
2x3x4 + x3

1x
3
3x2x4 + x3

1x
3
4x2x3 + x3

2x
3
3x1x4 + x3

2x
3
4x1x3 + x3

3x
3
4x1x2

Proposition 1.7. ∀n ∈ Z>0, ∀λ the polynomial mλ(Xn) is a symmetric polynomial in x1, ..., xn

Proof of proposition. There are two cases:
Case 1. n < l(λ), then by definition mλ(Xn) = 0 which is obviously a symmetric polynomial.
Case 2. n ≥ l(λ).

Lemma 1.8. Every permutation is a product of adjacent transpositions.
Proof of lemma. Since every permutation is a product of disjoint cycles, it is sufficient to show that every trans-
position is a product of adjacent transpositions. If a1 < a2, then

(a1 a2) = αβ
α = (a1, a1 + 1)(a1 + 1, a1 + 2)...(a2 − 1, a2)

β = (a2 − 1, a2 − 2)(a2 − 2, a2 − 3)...(a1 + 1, a+ 1)

This proves the lemma.

With this lemma it suffices to show that σj(mλ(Xn)) = mλ(Xn), 1 ≤ j ≤ n − 1, where σj is (j, j + 1). We
want to show that every term xµ1

1 ...xµn
n has the same coefficient in σj(mλ(Xn)) as in mλ(Xn). Now, we observe that

the coefficient of xµ1

1 ...xµn
n in mλ(Xn) is 1 if µ1, ..., µn is a reordering of λ and 0 otherwise. Hence, we see that if the

coefficient of xµ1

1 ...x
µj

j x
µj+1

j+1 ...xµn
n is 1, then the coefficient of xµ1

1 ...x
µj

j+1x
µj+1

j ...xµn
n is 1 and vice versa. This proves

proposition 1.7.

Remark 1.9. If λ ⊢ k, then the monomial symmetric polynomial mλ(Xn) is homogeneous of degree k, so
mλ(Xn) ∈ Λk(Xn).

Remark 1.10. Homogeneous: x5 + 2x3y2 + 9xy4, Non-homogeneous: x3 + 3x2y4 + z7

Proposition 1.11. If n ≥ 1, k ≥ 0, and n ≥ k, then the set

{mλ(Xn) : λ ⊢ k}

of monomial symmetric polynomials is a basis for Λk(Xn). In particular, dim Λk(Xn) = p(k), the number of parti-
tions of k.

Proof of proposition. To prove that the given set is a basis, it suffices to check two things: linear indepen-
dence, and span.

Linear Independence: First, observe that if λ and µ are partitions with λ ̸= µ, then mλ(Xn) and mµ(Xn) have
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no terms in common. Therefore, since each mλ(Xn) is nonzero,
∑

λ⊢k aλmλ(Xn) = 0 can only occur if aλ = 0 for
all λ ⊢ k. Hence, {mλ(Xn) : λ ⊢ k} is linearly independent.

Span: Suppose f ∈ Λk(Xn). If f = 0, then f =
∑

λ⊢k 0 · mλ(Xn), so suppose f ̸= 0. Now, argue by induc-
tion on the number of terms of f . f has a term of the form α

∏n
j=1 x

µj

j for some µ ⊢ k and some constant α.
Then f − αmµ(Xn) ∈ Λk(Xn) and f − αmµ(Xn) has fewer terms than f . By induction, f − αmµ(Xn) is a linear
combination of the elements of {mλ(Xn) : λ ⊢ k}, and thus f is as well.

There is exactly one monomial symmetric polynomial in Λk(Xn) for each partition of k, which yields dim Λk(Xn) =
p(k).

2 The Elementary Symmetric Functions

Motivation: Suppose we have a polynomial f(z) with 1 as the leading coefficient (monic) and roots x1, ..., xn. Then
we can express f as

f(z) = (z − x1)(z − x2)...(z − xn)

Notice that permuting xi does not change f and if we expand f we get that the coefficient of zk is a symmetric
polynomial in x1, ..., xn. More specifically, for any k with 0 ≤ k ≤ n, the coefficient of zn−k is the sum of all products
of exactly k distinct xj ’s up to sign. This is the elementary symmetric polynomial of degree k in x1, ..., xn.

Definition 2.2. ∀n, k ∈ Z>0, the elementary symmetric polynomial ek(Xn) is given by

ek(Xn) =
∑

1≤j1<...<jk≤n

k∏
m=1

xjm =
∑

J⊆[n]
|J|=k

∏
j∈J

xj

while the elementary symmetric function ek is given by

ek =
∑

J⊆Z>0

|J|=k

∏
j∈J

xj

By convention e0(Xn) = 1 and e0 = 1, and if n < k, then ek(Xn) = 0.

Remark 2.3. (−1)kek(Xn) is the coefficient of zn−k in the polynomial (z − x1)...(z − xn).

Definition 2.4. Suppose n ≥ 1 and λ is a partition. Then the elementary symmetric polynomial indexed by λ,
eλ(Xn), is given by

eλ(Xn) =
l(λ)∏
j=1

eλj (Xn)

Similarly, the elementary symmetric function indexed by λ, eλ, is given by

eλ =
l(λ)∏
j=1

eλj

Also, note that if n < λ1, then eλ(Xn) = 0.

∀n ≥ k ≥ 1, we can write ek(Xn) as a linear combination of monomial symmetric polynomials, and then write
ek as a linear combination of monomial symmetric functions.

Example 2.5. Write e21(X3), e21(X4), and e21(X5) as linear combinations of monomial symmetric polynomi-
als, and then write e21 as linear combination of monomial symmetric functions.

We get

• e21(X3) = (x1x2 + x1x3 + x2x3)(x1 + x2 + x3) = x2
1x2 + x2

1x3 + x1x2x3 + x1x
2
2 + x1x2x3 + x2

2x3 + x1x2x3 +
x1x

2
3 + x2x

2
3 = 3m111(X3) +m21(X3)
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• Similarly, e21(X4) = 3m111(X4) +m21(X4)

• And e21(X5) = 3m111(X5) +m21(X5)

• Hence, e21 = 3m111 +m21

Remark 2.6. We will define the following notation: For any partitions λ and µ with |λ| = |µ| and for any n ≥ 1,
let Mλ,µ,n(e,m) be the rational number defined by

eλ(Xn) =
∑

µ⊢|λ|
Mλ,µ,n(e,m)mµ(Xn)

Similarly, Mλ,µ(e,m) is the rational number defined by

eλ =
∑

µ⊢|λ|
Mλ,µ(e,m)mµ

Proposition 2.7. For any partitions λ, µ with |λ| = |µ|, if n ≥ |λ|, then Mλ,µ,n(e,m) = Mλ,µ(e,m). In particular,
if n ≥ |λ|, then Mλ,µ,n(e,m) is independent of n.

Proof of proposition. Set k = l(µ) and l = l(λ). The coefficient Mλ,µ(e,m) is the coefficient of xµ1

1 ...xµk

k in
eλ. If n ≥ |λ|, then this coefficient is determined by those terms in eλ1 , ..., eλl

, involving only x1, ..., xk. Since
k ≤ |λ| ≤ n, the variables x1, ..., xk ∈ {x1, ..., xn}, and Mλ,µ(e,m) is determined by those terms in eλ1

, ..., eλl
involv-

ing only x1, ..., xn. This is also how Mλ,µ,n(e,m) is determined, so Mλ,µ(e,m) = Mλ,µ,n(e,m)

Remark 2.8. To make our work easier, we represent each term of ek with a filling of a 1 × k tile with dis-
tinct positive integers, in increasing order from left to right, corresponding to the subscripts of the factors in that
term. For example, the term x2x3x5x7 corresponds to the filling of a 1× 4 tile. By stacking and left-justifying these
fillings, we can represent each term as a filling of the Ferrers diagram, in which the entries in each row are strictly
increasing from left to right. e.g.

Figure 2.9. The filling corresponding to the product of x2x3x5x7, x1x4, and x2

Similarly, for µ = (22, 13), the Ferrers diagram for (4, 2, 1) becomes

”Do the example - write Ferrers diagram - Put 1s (2) and 2s (2)” - put 3,4,5 - count number of possibilities

This gives the coefficient of m22111 in e421, which is 11.

Definition 2.10. Suppose λ and µ are partitions. We say λ is greater than µ in lexicographic order, and we
write λ >lex µ, whenever there is a positive integer m such that λj = µj for j < m and λm > µm. Here we take
λj = 0 if j > l(λ) and we take µj = 0 if j > l(µ).

Remark 2.11. This is very similar to the order we use for the alphabet.

Example 2.12. Write the partitions of 6 in lexicographic order, from largest to smallest.

⇒ (6) >lex (5, 1) >lex (4, 2) >lex (4, 12) >lex (32) >lex (3, 2, 1) >lex (3, 13) >lex (23) >lex (22, 12) >lex (2, 14) >lex (16)

Proposition 2.13. Suppose λ, µ are partitions with |λ| = |µ|. Then

(i) if µ >lex λ′ then Mλ,µ(e,m) = 0;
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(ii) Mλ,λ′(e,m) = 1.

Proof of proposition. (i) We have

eλ = eλ1
...eλl(λ)

and we note that Mλ,µ(e,m) is the coefficient of xµ1

1 ...x
µl(µ)

l(µ) in this product. If µ >lex λ′, then by definition there

exists m ≥ 1 such that µm > λ′
m and µj = λ′

j for 1 ≤ j < m. Each factor eλj
can contribute at most one factor x1

to our term, so µ1 = λ′
1 implies each factor eλj

contributes exactly one factor x1. (This corresponds to filling the
first column of the Ferrers diagram of λ with 1’s.) Similarly, only those eλj

with λj ≥ 2 can contribute a factor x2,
so each such eλj

must contribute exactly one factor x2. (This corresponds to filling the second column of the Ferrers
diagram of λ with 2’s.) Proceeding in this way, we see that only those eλj with λj ≥ m can contribute a factor xm

to our term, so the exponent on xm is at most λ′
m. Since µm > λ′

m, the term xµ1

1 ...x
µl(µ)

l(µ) does not appear in our

product, and 1 the result follows.

(ii) Arguing as in the proof of (i), we see the only way to produce the term x
λ′
1

1 ...x
λ′
l(λ′)

l(λ′) is to choose the term

x1...xl(λ′) eλj
for all j. Now the result follows.

Remark 2.14. The converse is false.

Example 2.15. Write e31 as a linear combination of monomial symmetric functions.

• Assume x1, ..., x4

• Normally,

(
4
3

)(
4
1

)
= 16 terms

• Use Ferrers, diagram (3,1) and plug in m14 , m2,12 , m22 , m31 to find the coefficients

Corollary 2.16. The set {eλ|λ ⊢ k} of elementary symmetric functions is a basis for Λk.

Proof of corollary. Let A be the p(k) × p(k) matrix whose rows and columns are indexed by the partitions
of k, in lexicographic order from smallest to largest, and whose entries are given by Aλµ = Mλ′,µ(e,m). By the
previous proposition, A is a lower triangular matrix whose diagonal entries are all equal to 1, so det A = 1 and A is
invertible. Since eλ′ =

∑
µ⊢k Aλµmµ, each monomial symmetric function mµ is a linear combination of elementary

symmetric functions, and {eλ|λ ⊢ k} spans Λk by a previous proposition. But dim Λk = p(k) = |{eλ|λ ⊢ k}|, so
{eλ|λ ⊢ k} must also be linearly independent. Therefore {eλ|λ ⊢ k} is a basis, which is what we wanted to prove.

Fact 2.17. The following hold for all partitions λ, µ ⊢ k.
Mλ,µ(e,m) is the number of k × k matrices in which every entry is 0 or 1,the sum of the entries in row m is µm for
all m, and the sum of the entries in column j is λj for all j.

Corollary 2.18. For all partitions λ, µ ⊢ k, we have

Mλ,µ(e,m) = Mµ,λ(e,m)

Proof of corollary. For any partitions λ, µ ⊢ k, let Bλ,µ be the set of k × k matrices in which every entry is 0 or
1, the sum of the entries in row m is µm for all m, and the sum of the entries in column j is λj for all j. By the
previous fact we have |Bλ,µ| = Mλ,µ(e,m). The result follows from the fact that the transpose map is a bijection
between Bλ,µ and Bµ,λ.

Proposition 2.19. The ordinary generating function for the sequence {en}∞n=0 of elementary symmetric functions
is

∞∑
n=0

ent
n =

∞∏
j=1

(1 + xjt)
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We often write E(t) to denote this generating function.

Proof of proposition. We can build each elementary symmetric function en uniquely by adding the terms which
result from deciding, for each j, whether to include xj as a factor or not. This matches our computation of the
product on the right hand side of the equality: we construct each term by deciding, for each factor 1 + xjt, whether
to use 1 or xjt as a factor.
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