This is a note on the construction of Dieudonne modules (over a perfect field), prepared for a student seminar on
-adic Hodge theory at Harvard, Fall 2012. Our main references are [1] and [2].
Dieudonne modules
Let
be a perfect field of characteristic
. Our goal is to classify finite (commutative)
-groups of
-power order using (semi-)linear algebraic data. Recall every such
-group can be decomposed as
Let
be the Frobenius and
be the Verschiebung, then
- on
:
is an isomorphism and
is nilpotent.
- on
:
is nilpotent and
is nilpotent.
- on
:
is nilpotent and
is an isomorphism.
The constant group
![$\mathbb{Z}/p \mathbb{Z}$](./latex/latex2png-Dieudonne_48399457_-5.gif)
is of etale-local type,
![$F$](./latex/latex2png-Dieudonne_42497042_0.gif)
acts as the identity and
![$V$](./latex/latex2png-Dieudonne_43545618_-1.gif)
acts as 0. Dually, the multiplicative group
![$\mu_p$](./latex/latex2png-Dieudonne_54163122_-5.gif)
is of local-etale type,
![$F$](./latex/latex2png-Dieudonne_42497042_0.gif)
acts as 0 and
![$V$](./latex/latex2png-Dieudonne_43545618_-1.gif)
acts as the identity. The self-dual group
![$\alpha_p=\ker F(\mathbb{G}_a\rightarrow \mathbb{G}_a)$](./latex/latex2png-Dieudonne_8185628_-5.gif)
is of local-local type and both
![$F$](./latex/latex2png-Dieudonne_42497042_0.gif)
and
![$V$](./latex/latex2png-Dieudonne_43545618_-1.gif)
acts as 0.
The etale part is relatively easy to deal with: it is same as giving the data of a finite
-module. Over
, the etale part is a constant group of
-power order and can be determined by its Pontryagin dual
. Of course, the local part cannot be detected at the level of points: we would like some enhancement of
to also detect the local part. A natural candidate is using the Witt ring scheme
. Let
be the ring scheme of Witt vectors of length
. We have at the level of
-points
and in general,
Motivated by this, we introduce the local group
to be the kernel of
on
. These are the replacements of
for local groups.
Staring at the action of
and
on
motivates the following definition.
Let
![$\sigma:W(k)\rightarrow W(k)$](./latex/latex2png-Dieudonne_160343885_-5.gif)
be the automorphism lifting
![$x\mapsto x^p$](./latex/latex2png-Dieudonne_155696060_-1.gif)
on
![$k$](./latex/latex2png-Dieudonne_42300434_0.gif)
. Let
![$D_k=W(k)[F,V]$](./latex/latex2png-Dieudonne_149503115_-5.gif)
be the
Dieudonne ring (noncommutative unless
![$k=\mathbb{F}_p$](./latex/latex2png-Dieudonne_68868732_-5.gif)
) subject to the relations
![$F x=\sigma(x)F$](./latex/latex2png-Dieudonne_169349085_-5.gif)
,
![$V\sigma(x)=xV$](./latex/latex2png-Dieudonne_28050048_-5.gif)
and
![$FV=VF=p$](./latex/latex2png-Dieudonne_169672628_-4.gif)
.
Let
![$G$](./latex/latex2png-Dieudonne_42562578_-1.gif)
be of local-local type. We define the (contravariant)
Dieudonne module of
![$G$](./latex/latex2png-Dieudonne_42562578_-1.gif)
to be
![$$M(G)=\varinjlim _{m,n} \Hom(G,W_n^m)=\varinjlim_n\Hom(G, W_n).$$](./latex/latex2png-Dieudonne_262107192_.gif)
Notice
![$M(G)$](./latex/latex2png-Dieudonne_56921030_-5.gif)
becomes a left
![$D_k$](./latex/latex2png-Dieudonne_171275284_-2.gif)
-module via the action of
![$D_k$](./latex/latex2png-Dieudonne_171275284_-2.gif)
on
![$W_n^m$](./latex/latex2png-Dieudonne_64522577_-4.gif)
.
The functor
![$G\mapsto M(G)$](./latex/latex2png-Dieudonne_91780916_-5.gif)
gives an exact anti-equivalence of categories between {finite
![$k$](./latex/latex2png-Dieudonne_42300434_0.gif)
-group schemes of local-local type} and {left
![$D_k$](./latex/latex2png-Dieudonne_171275284_-2.gif)
-modules of finite
![$W(k)$](./latex/latex2png-Dieudonne_61115333_-5.gif)
-length with
![$F$](./latex/latex2png-Dieudonne_42497042_0.gif)
,
![$V$](./latex/latex2png-Dieudonne_43545618_-1.gif)
nilpotent}.
We will not prove this theorem in detail but let us explain why the functor lies in the desired target.
The first part follows from the functoriality of
![$F$](./latex/latex2png-Dieudonne_42497042_0.gif)
and
![$V$](./latex/latex2png-Dieudonne_43545618_-1.gif)
. The second part follows from induction and the fact that
![$M(\alpha_p)=M(W_1^1)=\End(\alpha_p)\cong k$](./latex/latex2png-Dieudonne_182948268_-5.gif)
has
![$W(k)$](./latex/latex2png-Dieudonne_61115333_-5.gif)
-length 1. Notice that
![$\End(W_n^m)\rightarrow M(W_n^m)$](./latex/latex2png-Dieudonne_179971293_-5.gif)
is always injective. To show the surjectivity, one uses the fact that if
![$F^m=0$](./latex/latex2png-Dieudonne_151156382_-1.gif)
and
![$V^n=0$](./latex/latex2png-Dieudonne_167933614_-1.gif)
on
![$G$](./latex/latex2png-Dieudonne_42562578_-1.gif)
, then any homomorphism
![$\phi: G\rightarrow W_{n'}^{m'}$](./latex/latex2png-Dieudonne_248638072_-5.gif)
for
![$m'\ge m$](./latex/latex2png-Dieudonne_256506850_-3.gif)
and
![$n\ge n$](./latex/latex2png-Dieudonne_256416978_-3.gif)
factors uniquely through
![$W_n^m$](./latex/latex2png-Dieudonne_64522577_-4.gif)
(again by functoriality of
![$F$](./latex/latex2png-Dieudonne_42497042_0.gif)
and
![$V$](./latex/latex2png-Dieudonne_43545618_-1.gif)
).
¡õ
For a general finite
-group, we define its Dieudonne module for the three parts in its decomposition separately.
Suppose
![$G$](./latex/latex2png-Dieudonne_42562578_-1.gif)
is etale-local, then we define
![$M(G)=\varinjlim_n\Hom(G, W_n)$](./latex/latex2png-Dieudonne_75410850_-10.gif)
. Suppose
![$G$](./latex/latex2png-Dieudonne_42562578_-1.gif)
is local-etale, then we define
![$M(G)=M(G^\vee)^\vee$](./latex/latex2png-Dieudonne_169126395_-5.gif)
, where the dual outside is given by
![$M^\vee=\Hom_{W(k)}(M, W(k)[1/p]/W(k))$](./latex/latex2png-Dieudonne_224878624_-6.gif)
. In general, we decompose
![$G=G_{\mathrm{et},\mathrm{loc}}\times G_{\mathrm{loc},\mathrm{loc}}\times G_{\mathrm{loc},\mathrm{et}}$](./latex/latex2png-Dieudonne_109768029_-5.gif)
and define its (contravariant)
Dieudonne module
Let us also mention an important property that recovers the cotangent space of
from its Dieudonne module.
There is an natural isomorphism of vector spaces
![$T_{G,0}\cong (M(G)/F M(G))^\vee$](./latex/latex2png-Dieudonne_154760139_-5.gif)
.
Notice that the tangent space
![$$T_{G,0}:=\ker (G(k[\varepsilon])\rightarrow G(k))\cong \Hom(G^\vee, \mathbb{G}_a)=\Hom(G^\vee,W_1).$$](./latex/latex2png-Dieudonne_21493773_.gif)
Since
![$W_1=\ker V$](./latex/latex2png-Dieudonne_103466777_-2.gif)
on any
![$W_n$](./latex/latex2png-Dieudonne_46631916_-2.gif)
, we know that
![$$\Hom(G^\vee,W_1)=\ker V|M(G^\vee)=\ker V|M(G)^\vee=\mathrm{coker}(F|M(G))^\vee,$$](./latex/latex2png-Dieudonne_70934963_.gif)
as desired.
¡õ
We summarize the main theorem of Dieudonne theory as follows.
Fontaine's uniform construction
One unsatisfying aspect of the above construction of the Dieudonne functor is that definition for the local-etale (multiplicative) part seems a bit artificial. In the second part of this talk, we shall describe a uniform construction due to Fontaine.
Suppose
![$R$](./latex/latex2png-Dieudonne_43283474_-1.gif)
is a
![$k$](./latex/latex2png-Dieudonne_42300434_0.gif)
-algebra. By shifting to the left, we see that every element of
![$\varinjlim_n W_n(R)$](./latex/latex2png-Dieudonne_199434354_-10.gif)
is represented by a
covector ![$(a_{-n})=(\ldots, a_{-n},\ldots,a_0)$](./latex/latex2png-Dieudonne_202457509_-5.gif)
,
![$a_{-n}\in R$](./latex/latex2png-Dieudonne_140865596_-2.gif)
. Let
![$S_m$](./latex/latex2png-Dieudonne_113806316_-2.gif)
be the
![$m$](./latex/latex2png-Dieudonne_42431506_0.gif)
-th universal addition polynomial for Witt vectors, then the addition rule on covectors
![$(c_{-n})=(a_{-n})+(b_{-n})$](./latex/latex2png-Dieudonne_151621931_-5.gif)
is given by
![$c_n=S_m(a_{-m-n},\ldots,a_{-n},b_{-m-n},\ldots,b_{-n})$](./latex/latex2png-Dieudonne_104018627_-5.gif)
for
![$m\gg0$](./latex/latex2png-Dieudonne_52590237_-2.gif)
(which stabilizes). We denote the
![$k$](./latex/latex2png-Dieudonne_42300434_0.gif)
-group scheme obtained this way by
![$CW^\mathrm{u}$](./latex/latex2png-Dieudonne_63940887_-1.gif)
, called the
group of unipotent Witt covectors. This is simply a reformulation of what we used to detect the unipotent part of finite
![$k$](./latex/latex2png-Dieudonne_42300434_0.gif)
-group schemes of power order.
In order to also detect the multiplicative part, Fontaine generalizes it to the following.
Suppose
![$R$](./latex/latex2png-Dieudonne_43283474_-1.gif)
is a
![$k$](./latex/latex2png-Dieudonne_42300434_0.gif)
-algebra. We define
![$CW(R)$](./latex/latex2png-Dieudonne_45386086_-5.gif)
to consist of
![$(\ldots, a_{-n},\ldots,a_0)$](./latex/latex2png-Dieudonne_78160570_-5.gif)
,
![$a_{-n}\in R$](./latex/latex2png-Dieudonne_140865596_-2.gif)
for which there exists
![$r\ge0$](./latex/latex2png-Dieudonne_50493090_-3.gif)
such that the ideal generated by
![$\{a_{-n},n\ge r\}$](./latex/latex2png-Dieudonne_238658439_-5.gif)
is nilpotent. Then
![$CW^\mathrm{u}(R)\subseteq CW(R)$](./latex/latex2png-Dieudonne_48015401_-5.gif)
and indeed the addition rule also extends to
![$CW(R)$](./latex/latex2png-Dieudonne_45386086_-5.gif)
. We call the
![$k$](./latex/latex2png-Dieudonne_42300434_0.gif)
-group scheme
![$CW$](./latex/latex2png-Dieudonne_143225874_-1.gif)
the
group of Witt covectors. In particular,
![$CW(k)=CW^u(k)=\mathrm{Frac}(W(k))/W(k)$](./latex/latex2png-Dieudonne_196854720_-5.gif)
.
The functor
![$CW_k$](./latex/latex2png-Dieudonne_221606970_-2.gif)
from finite
![$k$](./latex/latex2png-Dieudonne_42300434_0.gif)
-algebras to groups
![$R\mapsto CW(R)$](./latex/latex2png-Dieudonne_186361563_-5.gif)
is pro-represented by a formal
![$p$](./latex/latex2png-Dieudonne_42628114_-4.gif)
-group
![$\widehat{CW}_k$](./latex/latex2png-Dieudonne_79069282_-2.gif)
.
Now we can define the Dieudonne module for the larger category of formal
-groups over
using
.
For any formal
![$p$](./latex/latex2png-Dieudonne_42628114_-4.gif)
-group
![$G$](./latex/latex2png-Dieudonne_42562578_-1.gif)
over
![$k$](./latex/latex2png-Dieudonne_42300434_0.gif)
, we define its (contravariant)
Dieudonne module ![$\underline{M}(G):=\Hom_\mathrm{formal-group}(G,\widehat{CW}_k)$](./latex/latex2png-Dieudonne_236321657_-5.gif)
.
For any
![$W(k)[F]$](./latex/latex2png-Dieudonne_264375767_-5.gif)
-profinite topological
![$D_k$](./latex/latex2png-Dieudonne_171275284_-2.gif)
-module
![$M$](./latex/latex2png-Dieudonne_42955794_0.gif)
, we define
![$\underline{G}(M)(R)=\Hom_{D_k, \mathrm{cont}}(M,\widehat{CW}_k(R))$](./latex/latex2png-Dieudonne_258032073_-5.gif)
for any finite
![$k$](./latex/latex2png-Dieudonne_42300434_0.gif)
-algebra
![$R$](./latex/latex2png-Dieudonne_43283474_-1.gif)
. Then
![$\underline{G}(M)$](./latex/latex2png-Dieudonne_72669138_-5.gif)
is a formal
![$p$](./latex/latex2png-Dieudonne_42628114_-4.gif)
-group over
![$k$](./latex/latex2png-Dieudonne_42300434_0.gif)
(as it is left exact).
(Fontaine)
The functor
![$G\mapsto \underline{M}(G)$](./latex/latex2png-Dieudonne_29085423_-5.gif)
gives an exact anti-equivalence of categories between {formal
![$p$](./latex/latex2png-Dieudonne_42628114_-4.gif)
-group schemes over
![$k$](./latex/latex2png-Dieudonne_42300434_0.gif)
} and {
![$W(k)[F]$](./latex/latex2png-Dieudonne_264375767_-5.gif)
-profinite topological
![$D_k$](./latex/latex2png-Dieudonne_171275284_-2.gif)
-modules}.
![$\underline{G}$](./latex/latex2png-Dieudonne_29974285_-3.gif)
is its quasi-inverse.
References
[1]Richard Pink, Finite group schemes, 2004, www.math.ethz.ch/~pink/ftp/FGS/CompleteNotes.pdf .
[2]Fontaine, J.M., Groupes p-divisibles sur les corps locaux, Société mathématique de France, 1977.
[3]Oda, T., The first de Rham cohomology group and Dieudonné modules, Ann. Sci. Ecole Norm. Sup.(4) 2 (1969), no.1, 63--135.