
MATH UN3025 - Midterm 2 Solutions

1. Suppose that n = p · q is the product of 2 prime numbers, p and q. Assume that y is a square
mod n and that y 6≡ 0 (mod n).
(a) (5 pts.) How many square roots does y have? Explain your answer.
Solution: Since y is a square mod n, it is also a square mod p and mod q. Every square mod p or
q has two square roots ±x unless it is 0 mod that prime. By the Chinese Remainder Theorem we
can combine the square roots mod p and mod q in any way, giving 4 solutions if y 6≡ 0 (mod p) and
y 6≡ 0 (mod q), but only 2 solutions if gcd(y, n) 6= 1 (so that y has only one square root modulo p
or modulo q). Since y 6≡ 0 (mod n), we must have at least 2 square roots.
(b) (5 pts.) Suppose that you know all of the square roots of y. Explain why you can use this
information to factor n.
Solution: From the above, either gcd(y, n) 6= 1 (in which case we get a factor of n from the gcd
since y 6≡ 0 (mod n)), or y has 4 square roots, call them ±a and ±b mod n. Then looking at the
possibilities for a and b mod p and q, we must have a ≡ b (mod p) and a 6≡ b (mod q) or the same
thing with p and q switched, else b would be equal to either a or −a. Then gcd(a − b, n) gives a
factor of n.
2. Answer the following two questions about hash functions.
(a) (6 pts.) State each of the 3 desired properties of hash functions.
Solution: These are

1. Easy to compute: given m, there is an efficient algorithm to calculate h(m).

2. Preimage resistant: given y, it is computationally difficult to find m so that h(m) = y.

3. Strongly collision free: it is computationally difficult to find m1,m2 so that h(m1) = h(m2).

(b) (4 pts.) Consider the following function. Given a message m, divide m into blocks of length
160 bits: m = M1||M2|| . . . ||M`. Let h(m) = M1 ⊕ · · · ⊕M`, where ⊕ is the bitwise XOR function.
Which of the three properties of a hash function does h satisfy? (Briefly explain why.)
Solution: Only easy to compute. Any y is its own preimage (by padding it on the left by 0’s so
that y is 160 bits), so it is not preimage resistant. Also you can take m and pad it with an extra
160 0’s to get a collision.
3. The ElGamal signature scheme signing algorithm is as follows. Alice has fixed a public prime p
and primitive root α mod p, as well as a secret integer a with 1 ≤ a ≤ p − 2. She makes β = αa

(mod p) public. To sign a message m, she:

1. Selects a secret random k such that gcd(k, p− 1) = 1.

2. Computes r ≡ αk (mod p), where 0 < r < p.

3. Computes s ≡ k−1(m− ar) (mod p− 1).

The signed message is the triple (m, r, s).

(a) (4 pts.) Fill in the blanks in Bob’s verification algorithm. (You don’t need to prove that it
works.)

1. Compute v1 ≡ βrrs (mod p) and v2 ≡ αm (mod p).

2. Check whether v1 ≡ v2 (mod p). If so, declare that the signature is valid.

1

(b) (4 pts.) Suppose u, v are any numbers such that gcd(v, p− 1) = 1. Compute r = βvαu (mod p)
and s ≡ −rv−1 (mod p − 1). Prove that (r, s) is a valid signature for m = su (mod p − 1). (This
is the existential forgery attack from your homework.)
Solution: We have βrrs ≡ αar+sav+su ≡ αar−ar+m ≡ αm (mod p).
(c) (2 pts.) Explain how hash functions can be used in order to prevent the preceding attack. More
precisely, if signA denotes Alice’s signing function and h is a hash function, explain why it is hard
to use the existential forgery attack to construct a triple of values (m,h(m), signA(h(m))).
Solution: The existential forgery attack produces pairs (y, signA(y)) with ease, but with no control
over what y looks like. So to provide a triple (m,h(m), signA(h(m))) using this attack, we would
need to find an m with h(m) = y, which is hard by preimage resistance.
4. (5 pts.) Consider the following protocol. Let p be a large prime and α a primitive root. Let
a be an integer and let β = αa (mod p). Suppose p, α, and β is public, and that Peggy wants to
prove to Victor that she knows a without revealing it. They agree to use the following protocol.

1. Peggy chooses a random number r (mod p− 1).

2. Peggy computes h1 ≡ αr (mod p) and h2 ≡ αa−r (mod p) and sends them to Victor.

3. Victor chooses i = 1 or i = 2 and asks Peggy to send either r1 = r or r2 = a− r (mod p− 1).

4. Victor verifies that h1h2 ≡ β and that hi ≡ αri (mod p).

They repeat this several times.

Suppose that Eve is trying to pretend to be Alice by claiming to Victor that she knows a. Assume
that Eve has a guess for Victor’s choice of i. In terms of Eve’s guess (either 1 or 2), what values of
h1 and h2 should Eve send Victor in each round? (Your choices of h1 and h2 should be such that if
Eve’s guess is right, she is able to respond to Victor’s challenge.)
Solution: Eve generates r (mod p − 1) as above. The given values h1 ≡ αr, h2 ≡ αa−r work for
i = 1, but she computes h2 via h2 ≡ βα−r (mod p). If i = 2, she sets h2 ≡ αr and defines h1 ≡ βα−r

instead. In both cases, she responds to Victor’s challenge with r if her guess is correct.
5. Let F2 be the finite field of 2 elements, and let P (X) = X4 +X3 + 1 in F2[X].
(a) (3 pts.) Prove that P (X) is irreducible. You may assume that X2 +X+1 is the only irreducible
polynomial of degree 2 in F2[X].
Solution: If not, P (X) = Q1(X)Q2(X) for lower degree polynomials Q1, Q2. If either one has degree
1, then P has a root in F2, but P (0) = P (1) = 1, so this is not the case. So Q1 and Q2 have degree
2. We can assume both are irreducible, else again P would have a linear factor and thus a root. So
P (X) must be (X2 +X + 1)2 = X4 +X2 + 1, but this is not the case. So P (X) is irreducible.
(b) (7 pts.) Define a finite field of 16 elements by F2[X] (mod P (X)). Find the inverse of X2 + 1
in this field.
Solution: We employ the division algorithm to get X4 +X3 + 1 = (X2 +X + 1)(X2 + 1) +X and
X2 + 1 = X · X + 1. We then use the Extended Euclidean algorithm: we calculate x0 = 0, x1 =
1, x2 = −(X2 +X + 1) · 1 + 0 = X2 +X + 1, x3 = −X(X2 +X + 1) + 1 = X3 +X2 +X + 1. The
algorithm gives the formula (X2 + 1)x3 + (X4 +X3 + 1)y3 = 1, which implies that X3 +X2 +X + 1
is the inverse. (Note that to determine the inverse, we did not need to know the actual value of y3.)
6. (a) (5 pts.) Let E be the elliptic curve y2 ≡ x3 + 2x+ 1 (mod 3). Find all the points on E.
Solution: We try x = 0, 1, 2 and find that x3 + 2x+ 1 ≡ 1 (mod 3) each time. Since 1 has 1 and 2
as square roots modulo 3, we find (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2), and∞ for our list of points.
(b) (5 pts.) How many points P on E satisfy P + P =∞?
Solution: From the doubling formula we see that for P = (x, y), 2P = ∞ is the same as y = 0,
which is never the case for our E. This leaves P =∞ as the only solution.
(c) (5 pts.) Find a point Q on E that satisfies (1, 1) +Q = (1, 2).

2

Solution: Add −(1, 1) = (1, 2) to both sides to get Q = 2(1, 2); the doubling formula shows that
Q = (2, 2).
Extra credit. (a) (1 pt.) Suppose that two sets of r objects are drawn from the same set of size
N . What is the formula from class giving an approximate probability of a match between an object
in the first set and an object in the second?
Solution: 1− e−λ, where λ = r2/N .
(b) (4 pts.) Suppose that h is a hash function mapping to strings of n = 60 bits. Explain in a
few sentences the method, discussed in class, that would allow Fred the Forger to trick Alice into
signing the hash of a legitimate contract C, while simultaneously obtaining her signature on the
hash of a fraudulent contract F . Assume that a success probability of 1− 1

e
is acceptable.

Solution: Fred finds 30 spots in both the legitimate and fraudulent contracts where an unmeaningful
change can be made. Then he hashes all the 230 possible versions of both contracts that can be
made by making or not making each of these changes. The probability that h(C) = h(F) for some
versions C and F of the legitimate and fraudulent contracts is 1− 1

e
by the preceding formula. Then

Fred asks Alice to sign the hash of C, which is also the hash of F .
(c) (1 pt.) How can Alice avoid falling for such a trap?
Solution: Alice makes her own unmeaningful change before signing C; to find a hash of a fraudulent
contract that matches that of C would require trying around 260 rather than 230 versions, which is
too many.

3

