1. Suppose that $n = p \cdot q$ is the product of 2 prime numbers, p and q. Assume that y is a square mod n and that $y \not\equiv 0 \pmod{n}$.

(a) (5 pts.) How many square roots does y have? Explain your answer.

Solution: Since y is a square mod n, it is also a square mod p and mod q. Every square mod p or q has two square roots $\pm x$ unless it is 0 mod that prime. By the Chinese Remainder Theorem we can combine the square roots mod p and mod q in any way, giving 4 solutions if $y \not\equiv 0 \pmod{p}$ and $y \not\equiv 0 \pmod{q}$, but only 2 solutions if $gcd(y, n) \neq 1$ (so that y has only one square root modulo p or modulo q). Since $y \not\equiv 0 \pmod{n}$, we must have at least 2 square roots.

(b) (5 pts.) Suppose that you know all of the square roots of y. Explain why you can use this information to factor n.

Solution: From the above, either $gcd(y, n) \neq 1$ (in which case we get a factor of n from the gcd since $y \not\equiv 0 \pmod{n}$), or y has 4 square roots, call them $\pm a$ and $\pm b \mod n$. Then looking at the possibilities for a and $b \mod p$ and q, we must have $a \equiv b \pmod{p}$ and $a \not\equiv b \pmod{q}$ or the same thing with p and q switched, else b would be equal to either a or -a. Then gcd(a - b, n) gives a factor of n.

2. Answer the following two questions about hash functions.

(a) (6 pts.) State each of the 3 desired properties of hash functions.

Solution: These are

- 1. Easy to compute: given m, there is an efficient algorithm to calculate h(m).
- 2. Preimage resistant: given y, it is computationally difficult to find m so that h(m) = y.
- 3. Strongly collision free: it is computationally difficult to find m_1, m_2 so that $h(m_1) = h(m_2)$.

(b) (4 pts.) Consider the following function. Given a message m, divide m into blocks of length 160 bits: $m = M_1 ||M_2|| \dots ||M_\ell$. Let $h(m) = M_1 \oplus \dots \oplus M_\ell$, where \oplus is the bitwise XOR function. Which of the three properties of a hash function does h satisfy? (Briefly explain why.)

Solution: Only easy to compute. Any y is its own preimage (by padding it on the left by 0's so that y is 160 bits), so it is not preimage resistant. Also you can take m and pad it with an extra 160 0's to get a collision.

3. The ElGamal signature scheme signing algorithm is as follows. Alice has fixed a public prime p and primitive root $\alpha \mod p$, as well as a secret integer a with $1 \le a \le p-2$. She makes $\beta = \alpha^a \pmod{p}$ public. To sign a message m, she:

- 1. Selects a secret random k such that gcd(k, p-1) = 1.
- 2. Computes $r \equiv \alpha^k \pmod{p}$, where 0 < r < p.
- 3. Computes $s \equiv k^{-1}(m ar) \pmod{p-1}$.

The signed message is the triple (m, r, s).

(a) (4 pts.) Fill in the blanks in Bob's verification algorithm. (You don't need to prove that it works.)

- 1. Compute $v_1 \equiv \beta^r r^s \pmod{p}$ and $v_2 \equiv \alpha^m \pmod{p}$.
- 2. Check whether $v_1 \equiv v_2 \pmod{p}$. If so, declare that the signature is valid.

(b) (4 pts.) Suppose u, v are any numbers such that gcd(v, p-1) = 1. Compute $r = \beta^v \alpha^u \pmod{p}$ and $s \equiv -rv^{-1} \pmod{p-1}$. Prove that (r, s) is a valid signature for $m = su \pmod{p-1}$. (This is the existential forgery attack from your homework.)

Solution: We have $\beta^r r^s \equiv \alpha^{ar+sav+su} \equiv \alpha^{ar-ar+m} \equiv \alpha^m \pmod{p}$.

(c) (2 pts.) Explain how hash functions can be used in order to prevent the preceding attack. More precisely, if sign_A denotes Alice's signing function and h is a hash function, explain why it is hard to use the existential forgery attack to construct a triple of values $(m, h(m), \operatorname{sign}_A(h(m)))$.

Solution: The existential forgery attack produces pairs $(y, \operatorname{sign}_A(y))$ with ease, but with no control over what y looks like. So to provide a triple $(m, h(m), \operatorname{sign}_A(h(m)))$ using this attack, we would need to find an m with h(m) = y, which is hard by preimage resistance.

4. (5 pts.) Consider the following protocol. Let p be a large prime and α a primitive root. Let a be an integer and let $\beta = \alpha^a \pmod{p}$. Suppose p, α , and β is public, and that Peggy wants to prove to Victor that she knows a without revealing it. They agree to use the following protocol.

- 1. Peggy chooses a random number $r \pmod{p-1}$.
- 2. Peggy computes $h_1 \equiv \alpha^r \pmod{p}$ and $h_2 \equiv \alpha^{a-r} \pmod{p}$ and sends them to Victor.
- 3. Victor chooses i = 1 or i = 2 and asks Peggy to send either $r_1 = r$ or $r_2 = a r \pmod{p-1}$.
- 4. Victor verifies that $h_1h_2 \equiv \beta$ and that $h_i \equiv \alpha^{r_i} \pmod{p}$.

They repeat this several times.

Suppose that Eve is trying to pretend to be Alice by claiming to Victor that she knows a. Assume that Eve has a guess for Victor's choice of i. In terms of Eve's guess (either 1 or 2), what values of h_1 and h_2 should Eve send Victor in each round? (Your choices of h_1 and h_2 should be such that if Eve's guess is right, she is able to respond to Victor's challenge.)

Solution: Eve generates $r \pmod{p-1}$ as above. The given values $h_1 \equiv \alpha^r$, $h_2 \equiv \alpha^{a-r}$ work for i = 1, but she computes h_2 via $h_2 \equiv \beta \alpha^{-r} \pmod{p}$. If i = 2, she sets $h_2 \equiv \alpha^r$ and defines $h_1 \equiv \beta \alpha^{-r}$ instead. In both cases, she responds to Victor's challenge with r if her guess is correct.

5. Let \mathbb{F}_2 be the finite field of 2 elements, and let $P(X) = X^4 + X^3 + 1$ in $\mathbb{F}_2[X]$.

(a) (3 pts.) Prove that P(X) is irreducible. You may assume that $X^2 + X + 1$ is the only irreducible polynomial of degree 2 in $\mathbb{F}_2[X]$.

Solution: If not, $P(X) = Q_1(X)Q_2(X)$ for lower degree polynomials Q_1, Q_2 . If either one has degree 1, then P has a root in \mathbb{F}_2 , but P(0) = P(1) = 1, so this is not the case. So Q_1 and Q_2 have degree 2. We can assume both are irreducible, else again P would have a linear factor and thus a root. So P(X) must be $(X^2 + X + 1)^2 = X^4 + X^2 + 1$, but this is not the case. So P(X) is irreducible.

(b) (7 pts.) Define a finite field of 16 elements by $\mathbb{F}_2[X] \pmod{P(X)}$. Find the inverse of $X^2 + 1$ in this field.

Solution: We employ the division algorithm to get $X^4 + X^3 + 1 = (X^2 + X + 1)(X^2 + 1) + X$ and $X^2 + 1 = X \cdot X + 1$. We then use the Extended Euclidean algorithm: we calculate $x_0 = 0, x_1 = 1, x_2 = -(X^2 + X + 1) \cdot 1 + 0 = X^2 + X + 1, x_3 = -X(X^2 + X + 1) + 1 = X^3 + X^2 + X + 1$. The algorithm gives the formula $(X^2 + 1)x_3 + (X^4 + X^3 + 1)y_3 = 1$, which implies that $X^3 + X^2 + X + 1$ is the inverse. (Note that to determine the inverse, we did not need to know the actual value of y_3 .) **6.** (a) (5 pts.) Let *E* be the elliptic curve $y^2 \equiv x^3 + 2x + 1 \pmod{3}$. Find all the points on *E*.

Solution: We try x = 0, 1, 2 and find that $x^3 + 2x + 1 \equiv 1 \pmod{3}$ each time. Since 1 has 1 and 2 as square roots modulo 3, we find (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2), and ∞ for our list of points. (b) (5 pts.) How many points P on E satisfy $P + P = \infty$?

Solution: From the doubling formula we see that for P = (x, y), $2P = \infty$ is the same as y = 0, which is never the case for our E. This leaves $P = \infty$ as the only solution.

(c) (5 pts.) Find a point Q on E that satisfies (1, 1) + Q = (1, 2).

Solution: Add -(1,1) = (1,2) to both sides to get Q = 2(1,2); the doubling formula shows that Q = (2,2).

Extra credit. (a) (1 pt.) Suppose that two sets of r objects are drawn from the same set of size N. What is the formula from class giving an approximate probability of a match between an object in the first set and an object in the second?

Solution: $1 - e^{-\lambda}$, where $\lambda = r^2/N$.

(b) (4 pts.) Suppose that h is a hash function mapping to strings of n = 60 bits. Explain in a few sentences the method, discussed in class, that would allow Fred the Forger to trick Alice into signing the hash of a legitimate contract C, while simultaneously obtaining her signature on the hash of a fraudulent contract F. Assume that a success probability of $1 - \frac{1}{e}$ is acceptable.

Solution: Fred finds 30 spots in both the legitimate and fraudulent contracts where an unmeaningful change can be made. Then he hashes all the 2^{30} possible versions of both contracts that can be made by making or not making each of these changes. The probability that h(C) = h(F) for some versions C and F of the legitimate and fraudulent contracts is $1 - \frac{1}{e}$ by the preceding formula. Then Fred asks Alice to sign the hash of C, which is also the hash of F.

(c) (1 pt.) How can Alice avoid falling for such a trap?

Solution: Alice makes her own unmeaningful change before signing C; to find a hash of a fraudulent contract that matches that of C would require trying around 2^{60} rather than 2^{30} versions, which is too many.