MATH UN3025 - Midterm 2 Solutions

1. Suppose that n = p- ¢ is the product of 2 prime numbers, p and ¢. Assume that y is a square
mod n and that y # 0 (mod n).

(a) (5 pts.) How many square roots does y have? Explain your answer.

Solution: Since y is a square mod n, it is also a square mod p and mod q. Every square mod p or
q has two square roots +z unless it is 0 mod that prime. By the Chinese Remainder Theorem we
can combine the square roots mod p and mod ¢ in any way, giving 4 solutions if y # 0 (mod p) and
y #Z 0 (mod ¢q), but only 2 solutions if ged(y,n) # 1 (so that y has only one square root modulo p
or modulo ¢). Since y Z 0 (mod n), we must have at least 2 square roots.

(b) (5 pts.) Suppose that you know all of the square roots of y. Explain why you can use this
information to factor n.

Solution: From the above, either ged(y,n) # 1 (in which case we get a factor of n from the ged
since y # 0 (mod n)), or y has 4 square roots, call them +a and £b mod n. Then looking at the
possibilities for a and b mod p and ¢, we must have a = b (mod p) and a # b (mod ¢) or the same
thing with p and ¢ switched, else b would be equal to either a or —a. Then ged(a — b,n) gives a
factor of n.

2. Answer the following two questions about hash functions.

(a) (6 pts.) State each of the 3 desired properties of hash functions.

Solution: These are

1. Easy to compute: given m, there is an efficient algorithm to calculate h(m).
2. Preimage resistant: given y, it is computationally difficult to find m so that h(m) = y.
3. Strongly collision free: it is computationally difficult to find my, my so that h(m;) = h(ms).

(b) (4 pts.) Consider the following function. Given a message m, divide m into blocks of length
160 bits: m = M;||Ms|| ... ||M,. Let h(m) = M; @ - - - & M,, where @ is the bitwise XOR function.
Which of the three properties of a hash function does h satisfy? (Briefly explain why.)

Solution: Only easy to compute. Any y is its own preimage (by padding it on the left by 0’s so
that y is 160 bits), so it is not preimage resistant. Also you can take m and pad it with an extra
160 0’s to get a collision.

3. The ElGamal signature scheme signing algorithm is as follows. Alice has fixed a public prime p
and primitive root a mod p, as well as a secret integer a with 1 < a < p — 2. She makes § = a®
(mod p) public. To sign a message m, she:

1. Selects a secret random k such that ged(k,p — 1) = 1.
2. Computes r = o* (mod p), where 0 < 7 < p.
3. Computes s = k~*(m — ar) (mod p —1).

The signed message is the triple (m,r, s).

(a) (4 pts.) Fill in the blanks in Bob’s verification algorithm. (You don’t need to prove that it
works.)

1. Compute v; = "r* (mod p) and vs = @™ (mod p).

2. Check whether v; = vy (mod p). If so, declare that the signature is valid.

(b) (4 pts.) Suppose u,v are any numbers such that ged(v,p—1) = 1. Compute r = 5%a* (mod p)
and s = —rv~! (mod p — 1). Prove that (r,s) is a valid signature for m = su (mod p — 1). (This
is the existential forgery attack from your homework.)

Solution: We have f7r® = @ tsevtst = qor—ar+tm = o™ (mod p).

(c) (2 pts.) Explain how hash functions can be used in order to prevent the preceding attack. More
precisely, if sign, denotes Alice’s signing function and h is a hash function, explain why it is hard
to use the existential forgery attack to construct a triple of values (m, h(m),sign,(h(m))).
Solution: The existential forgery attack produces pairs (y, sign,(y)) with ease, but with no control
over what y looks like. So to provide a triple (m, h(m),sign,(h(m))) using this attack, we would
need to find an m with h(m) = y, which is hard by preimage resistance.

4. (5 pts.) Consider the following protocol. Let p be a large prime and « a primitive root. Let
a be an integer and let 5 = a® (mod p). Suppose p, «, and 3 is public, and that Peggy wants to
prove to Victor that she knows a without revealing it. They agree to use the following protocol.

1. Peggy chooses a random number r (mod p — 1).

r

2. Peggy computes hy = o (mod p) and hy = a*" (mod p) and sends them to Victor.

3. Victor chooses i = 1 or i = 2 and asks Peggy to send either ry =7 or 79 = a—r (mod p—1).
4. Victor verifies that h1hy = 5 and that h; = o™ (mod p).

They repeat this several times.

Suppose that Eve is trying to pretend to be Alice by claiming to Victor that she knows a. Assume
that Eve has a guess for Victor’s choice of 7. In terms of Eve’s guess (either 1 or 2), what values of
hy and hs should Eve send Victor in each round? (Your choices of h; and hy should be such that if
Eve’s guess is right, she is able to respond to Victor’s challenge.)

Solution: Eve generates r (mod p — 1) as above. The given values h; = o, hy = a* " work for
i = 1, but she computes hy via hy = fa™" (mod p). If i = 2, she sets hy = " and defines hy = fa™"
instead. In both cases, she responds to Victor’s challenge with r if her guess is correct.

5. Let Fy be the finite field of 2 elements, and let P(X) = X* + X3 + 1 in Fy[X].

(a) (3 pts.) Prove that P(X) is irreducible. You may assume that X2+ X +1 is the only irreducible
polynomial of degree 2 in Fy[X].

Solution: If not, P(X) = @Q1(X)Q2(X) for lower degree polynomials ()1, Q)5. If either one has degree
1, then P has a root in Fy, but P(0) = P(1) = 1, so this is not the case. So @)1 and @5 have degree
2. We can assume both are irreducible, else again P would have a linear factor and thus a root. So
P(X) must be (X% + X 4+ 1)? = X* + X? + 1, but this is not the case. So P(X) is irreducible.

(b) (7 pts.) Define a finite field of 16 elements by F5[X] (mod P(X)). Find the inverse of X? + 1
in this field.

Solution: We employ the division algorithm to get X%+ X3 +1 = (X?+ X +1)(X?+1) + X and
X2 +1=X-X+1. We then use the Extended Euclidean algorithm: we calculate g = 0,2; =
Log=—(X?+X+1)-14+0=X>+X+1,23=—-X(X?+X+1)+1=X>+ X2+ X + 1. The
algorithm gives the formula (X?+1)z3 + (X* 4 X3 +1)y3 = 1, which implies that X® + X%+ X +1
is the inverse. (Note that to determine the inverse, we did not need to know the actual value of ys.)
6. (a) (5 pts.) Let E be the elliptic curve y> = 2® + 2z + 1 (mod 3). Find all the points on E.
Solution: We try z = 0,1,2 and find that 23 + 2z + 1 =1 (mod 3) each time. Since 1 has 1 and 2
as square roots modulo 3, we find (0, 1), (0,2), (1, 1), (1,2),(2,1),(2,2), and oo for our list of points.
(b) (5 pts.) How many points P on E satisfy P + P = 0o?

Solution: From the doubling formula we see that for P = (x,y), 2P = oo is the same as y = 0,
which is never the case for our E. This leaves P = oo as the only solution.

(c) (5 pts.) Find a point) on F that satisfies (1,1) + Q = (1,2).

r

Solution: Add —(1,1) = (1,2) to both sides to get @ = 2(1,2); the doubling formula shows that
Q= (27 2)'

Extra credit. (a) (1 pt.) Suppose that two sets of r objects are drawn from the same set of size
N. What is the formula from class giving an approximate probability of a match between an object
in the first set and an object in the second?

Solution: 1 —e™*, where A = r?/N.

(b) (4 pts.) Suppose that h is a hash function mapping to strings of n = 60 bits. Explain in a
few sentences the method, discussed in class, that would allow Fred the Forger to trick Alice into
signing the hash of a legitimate contract C', while simultaneously obtaining her signature on the
hash of a fraudulent contract F'. Assume that a success probability of 1 — % is acceptable.
Solution: Fred finds 30 spots in both the legitimate and fraudulent contracts where an unmeaningful
change can be made. Then he hashes all the 23° possible versions of both contracts that can be
made by making or not making each of these changes. The probability that h(C') = h(F’) for some
versions C' and F' of the legitimate and fraudulent contracts is 1 — % by the preceding formula. Then
Fred asks Alice to sign the hash of C', which is also the hash of F.

(c) (1 pt.) How can Alice avoid falling for such a trap?

Solution: Alice makes her own unmeaningful change before signing C'; to find a hash of a fraudulent
contract that matches that of C would require trying around 2°° rather than 23° versions, which is
too many.

