TRANSCENDENCE DEGREE GIVES A DIMENSION FUNCTION

Throughout k is a field. For any finite type k-algebra A we consider the function

$$\delta : \operatorname{Spec}(A) \longrightarrow \mathbf{Z}, \quad \mathfrak{p} \longmapsto \delta(\mathfrak{p}) = \operatorname{trdeg}_k(\kappa(\mathfrak{p}))$$

Lemma 0.1. Let $A \subset B$ be an integral extension of domains. If $J \subset B$ is a nonzero ideal, then $A \cap J$ is nonzero.

Proof. Let $b \in J$ be nonzero. Let $P = t^d + a_1 t^{d-1} + \ldots + a_d \in A[t]$ be a monic polynomial of minial degree with P(b) = 0. Then a_d is nonzero, since otherwise we may replace P by P/t (here we use that B is a domain and b is nonzero) and lower the degree of P. Then $a_d = -b^d - a_1 b^{d-1} - \ldots - a_{d-1} b \in J \cap A$.

Lemma 0.2. Let $A \subset B$ be an extension of domains and denote $K \subset L$ their fraction fields. Let $b \in B$ be integral over A. If A is normal, then the minimal polynomial $P \in K[t]$ of b viewed as an element of L has coefficients in A.

Proof. Let $Q \in A[t]$ be a monic polynomial such that $Q(b) = 0^1$. Since P is the minimal polynomial of b we see that P is monic and P divides Q in K[t]. Choose a splitting field M/L of Q. Write

$$Q = (t - \beta_1) \dots (t - \beta_m)$$

with β_1, \ldots, β_m the roots of Q in M. Clearly, β_1, \ldots, β_m are integral over A. Since P|Q and P is monic, we see that after a permutation we can find $n \leq m$ such that

$$P = (t - \beta_1) \dots (t - \beta_n)$$

Thus the coefficients are polynomials in the β_j 's and in particular they are integral over A. Since they are also in K and A is normal, we see that they are in A. \square

Lemma 0.3. Let A be a finite type k-algebra. For $g \in A$ there is a finite type k-algebra $A_g = A[t]/(gt-1)$ with the following property: the induced map $\operatorname{Spec}(A_g) \to \operatorname{Spec}(A)$ induces a homeomorphism onto $D(g) \subset \operatorname{Spec}(A)$ and identifies residue fields.

Proof. Omitted.
$$\Box$$

Lemma 0.4. Let A be of finite type over a field k. Let $\mathfrak{q} \subset \mathfrak{p} \subset A$ be distinct primes. Then $\delta(\mathfrak{q}) > \delta(\mathfrak{p})$.

Proof. Set $A' = A/\mathfrak{q}$, $\mathfrak{q}' = (0)$, and $\mathfrak{p}' = \mathfrak{p}/\mathfrak{q}$. Then $\kappa(\mathfrak{p}') = \kappa(\mathfrak{p})$ and $\kappa(\mathfrak{q}') = \kappa(\mathfrak{q})$; please prove this yourselves. Thus we may assume A is a domain and $\mathfrak{q} = (0)$. In other words, we have to show: if A is a domain and $\mathfrak{p} \subset A$ is a nonzero prime, then the transcendence degree of $\kappa(\mathfrak{p})$ over k is less than the transcendence degree of f.f.(A).

Choose $P = k[x_1, \dots, x_r] \subset A$ finite (Noether normalization, see previous lecture). Then

$$k(x_1,\ldots,x_r)\subset f.f.(A)$$

¹The existence of Q guarantees that b viewed as an element of L is indeed algebraic over K and hence the statement of the lemma makes sense.

is a finite extension, hence the transcendence degree of f.f.(A) is r. By Lemma 0.1 there is a nonzero element $g \in k[x_1, \ldots, x_r]$ contained in \mathfrak{p} . Thus the images $\overline{x}_1, \ldots, \overline{x}_r$ of the elements x_1, \ldots, x_r in $\kappa(\mathfrak{p}) = f.f.(A/\mathfrak{p})$ aren't algebraically independent. Now $\kappa(\mathfrak{p})$ is algebraic over the subfield generated by k and $\overline{x}_1, \ldots, \overline{x}_r$; please prove this yourselves. We conclude that the transcendence degree of $\kappa(\mathfrak{p})$ over k is strictly less than r.

Lemma 0.5. Let A be of finite type over a field k. Let $\mathfrak{q} \subset \mathfrak{p} \subset A$ be distinct prime ideals with no prime ideal strictly in between. Then $\delta(\mathfrak{p}) + 1 = \delta(\mathfrak{q})$.

Proof. After replacing A by A/\mathfrak{q} as in the proof of Lemma 0.4 we may assume $\mathfrak{q}=(0)$ and hence $\mathfrak{p}\subset A$ is a prime ideal minimal with the property of not being zero. Our goal is to show that $\operatorname{trdeg}_k \kappa(\mathfrak{p})+1=\operatorname{trdeg}_k f.f.(A)$.

Pick nonzero f in \mathfrak{p} . Then \mathfrak{p} is minimal over (f), i.e., \mathfrak{p} defines a generic point of V(f). By a previous result V(f) has a finite number of generic points besides \mathfrak{p} . By prime avoidance can pick g in those primes but not in \mathfrak{p} . After replacing A by A_g we get $\mathfrak{p} = \sqrt{(f)}$. Some details omitted; see Lemma 0.3 to see why it is permissible to do this replacement.

Choose $P = k[x_1, \ldots, x_r] \subset A$ finite (Noether normalization). Then $r = \operatorname{trdeg}_k f.f.(A)$, see proof of Lemma 0.4. For all elements of A the minimal polynomial has coefficients in P by Lemma 0.2 and the normality of the polynomial algebra. In particular get $Nm: A \to P$ because the norm of an element is a power of the last coefficient of the minimal polynomial (see previous lecture).

Let $\mathfrak{q} = P \cap \mathfrak{p}$. Then $g \in \mathfrak{q}$ implies $g^n = af$ for some n > 0 and $a \in A$. Let d be the degree of the extension f.f.(A)/f.f.(P). Then

$$g^{nd} = Nm(g)^n = Nm(g^n) = Nm(a)Nm(f)$$

by properties of the norm (see previous lecture).

We have $Nm(f) \in \mathfrak{q}$: the last coefficient of its minimal polynomial is in \mathfrak{p} and in P and Nm(f) is a power of it (compare with the proof of Lemma 0.1). Thus, we see that one of the irreducible factors, say g, of Nm(f) is in \mathfrak{q} . Applying the displayed equation above we see that Nm(f) is a power of the irreducible g up to a unit.

We claim $\mathfrak{q} = (g)$. Namely, if $h \in \mathfrak{q}$, then applying the displayed equation for h we see that g divides a power of h, hence $h \in (g)$.

The transcendence degree of $\kappa(\mathfrak{q})$ over k is r-1 (see previous lecture). The extension $\kappa(\mathfrak{q}) \subset \kappa(\mathfrak{p})$ is finite because $P \subset A$ is finite; please prove this yourselves. Thus the transcendence degree of $\kappa(\mathfrak{p})$ over k is r-1 as well.

Lemma 0.6 (Hilbert Nullstellensatz). Let A be finite type over a field k. Let $\mathfrak{p} \subset A$ be a prime. Then the following are equivalent

- (1) \mathfrak{p} is a maximal ideal,
- (2) $trdeg_k \kappa(\mathfrak{p}) = 0$,
- (3) $\kappa(\mathfrak{p})$ is finite over k.

Proof. After replacing A by A/\mathfrak{p} we see that we have to show the following: given a domain A of finite type over k the following are equivalent

- (1) A is a field,
- (2) $\operatorname{trdeg}_k f. f.(A) = 0$,

(3) f.f.(A) is finite over k.

The equivalence of (2) and (3) is immediate from our discussion of transcendence degree of finitely generated field extensions of k in a previous lecture.

(2) \Rightarrow (1): If A is not a field, then A has a nonzero prime ideal. Then Lemma 0.4 immediately implies $\operatorname{trdeg}_k f.f.(A) > 0$.

(1) \Rightarrow (2). Assume $r = \operatorname{trdeg}_k f.f.(A) > 0$. Then there is a finite inclusion $P = k[x_1, \ldots, x_r] \subset A$ by Noether normalization (where r = r, see proof of Lemma 0.4). Then x_1 cannot be invertible in A, since if so, then $x_1^{-1} \in P$ (which is absurd) by Lemma 0.2 and the normality of the polynomial algebra P. Thus A is not a field because x_1 is not invertible in A.

Theorem 0.7. Let A be a finite type algebra over a field k. The function

$$\delta : \operatorname{Spec}(A) \longrightarrow \mathbf{Z}, \quad \mathfrak{p} \longmapsto \delta(\mathfrak{p}) = \operatorname{trdeg}_k(\kappa(\mathfrak{p}))$$

is a dimension function and we have $\delta(\mathfrak{p})=0$ if and only if \mathfrak{p} is a closed point.

Proof. Combine Lemmas 0.4, 0.5, and 0.6.

There are many things you can conclude from this. Let us give three examples.

Lemma 0.8. Let A be a finite type k-algebra and set $X = \operatorname{Spec}(A)$.

- (1) If $x \in X$, then there is a specialization $x \rightsquigarrow y$ with y closed in X.
- (2) We have $\dim(X) = \max\{\delta(x) \mid x \in X\}.$
- (3) For $x \in X$ with $\delta(x) > 0$ the set of closed points of $Z = \{x\}$ is infinite.

Proof. The proof of (1) is formal from the theorem. Namely, if $\delta(x) = 0$, then we take y = x (this is forced). If $\delta(x) > 0$ we see that x is not a closed point of X. Hence we can find $x \leadsto x'$ in X with $\delta(x) > \delta(x')$. If $\delta(x') > 0$, then we can do it again. Thus we can continue

$$x \leadsto x' \leadsto x'' \leadsto \ldots \leadsto x^{(e)}$$

until we hit a final point $x^{(e)} \in X$ with $\delta(x^{(e)}) = 0$. Set $y = x^{(e)}$. This is a closed point by the theorem. Since specialization is transitive we see that $x \rightsquigarrow y$.

Proof of (2). Since X is a sober² topological space the dimension of X is equal to the supremum of the lengths of chains of nontrivial specializations

$$x_n \leadsto x_{n-1} \leadsto \ldots \leadsto x_0$$

in X. By the properties of a dimension function, we can assume $\delta(x_i) = \delta(x_{i-1}) + 1$. Since every prime in a ring contains a minimal prime and is contained in a maximal ideal, we may assume that x_n is a generic point of an irreducible component of X and x_0 a closed point. Then $n = \delta(x_n)$. Finally, there are only finitely many irreducible components of X hence the supremum is attained.

To prove (3) we use that X has a basis for its topology consisting of opens U which also have the property with respect to $\delta|_U$; namely the principal opens $D(g) = \operatorname{Spec}(A_g)$, see Lemma 0.3. Suppose we have closed points $x_1, \ldots, x_n \in Z$. Then we can choose an open $U \subset X$ as above with $x \in U$ and $x_1 \notin U, \ldots, x_n \notin U$. By (1) applied to $x \in U$ we can find $x \leadsto y$ in U with y closed in U, equivalent $\delta(y) = 0$. Then $y \in X$ is closed because the function δ is the same for y viewed as a point

²This means that every closed irreducible subset Z is of the form $\overline{\{\eta\}}$ for a unique generic point $\eta \in Z$.

of U or of X! Since $y \in Z$ is not equal to x_1, \ldots, x_n it is a "new" closed point as desired.

Example 0.9. For example, part (3) of the last lemma says that $k[x_1, \ldots, x_n]$ has infinitely many maximal ideals if n > 0. This is obvious if k is infinite, as you can take the ideals $(x_1 - a_1, \ldots, x_n - a_n)$ for $(a_1, \ldots, a_n) \in k^n$. But it is true even if k is a finite field. More interestingly perhaps, suppose $k = \mathbf{Q}$ and consider $A = \mathbf{Q}[x,y]/(x^2 + y^2 + 1)$. Then there are no Q-rational points on $\operatorname{Spec}(A)$, i.e., there are no maximal ideals $\mathfrak{m} \subset A$ with $\kappa(\mathfrak{m}) \cong \mathbf{Q}$. However, there are still infinitely many maximal ideals: you can take $\mathfrak{m}_n = (x - n, y^2 + n^2 + 1)$ for $n \in \mathbf{N}$.

Example 0.10. Suppose that we consider the ring

$$A = k[x, y, z, w]/(xy, xz)$$

Then we have two irreducible components corresponding to the prime ideals (x) and (y, z). The dimension of these irreducible components is 3 and 2. Thus the dimension of A is 3.