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1. Introduction

The way I am explaining and introducing the material is a little bit nonstandard
although it covers all the usual ingredients. Just keep that in mind.

We will work consistently with what are called logarithmic heights in the literature.

2. Goal of the discussion

Let K be a field. We assume given for each n ≥ 0 a function

hn : Pn(K) −→ R

These functions have to satisfy some axioms (yet to be clarified).

Suppose given some projective variety X. Throughout variety will mean variety
over K. In particular Pn will mean projective n-space over K. Suppose given a
morphism of varieties

ϕ : X −→ Pn

Then we get a function

hϕ = hn ◦ ϕ : X(K) −→ R≥0
1
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and we get an invertible module Lϕ = ϕ∗OPn(1). Our goal is to have enough
axioms such that the following are true

(1) Given two morphisms ϕ : X → Pn and ψ : X → Pm such that Lϕ ∼= Lψ
as invertible modules on X then there exists a constant C > 0 such that

|hϕ − hψ| ≤ C

(2) given three morphisms ϕ : X → Pn, ϕ′ : X → Pn
′
, and ψ : X → Pm

such that Lϕ ⊗ Lϕ′ ∼= Lψ as invertible modules on X then there exists a
constant C > 0 such that

|hϕ + hϕ′ − hψ| ≤ C

Note that actually property (1) follows from property (2) as we can pick ϕ′ : X →
P0 the constant morphism.

Of course, conditions (1) and (2) are trivially true if we pick each hn bounded. But
as soon as some hn is not bounded, then it is not clear that (1) and (2) are satisfied.

3. Heights over the rationals

It turns out that over the rationals, i.e., when K = Q we can construct interesting
natural functions

hn : Pn(Q) −→ R≥0

Namely, suppose given a point

x = (x0 : . . . : xn) ∈ Pn(Q)

Then elementary number theory tells us there is a unique c = cx ∈ Q∗>0 such that
cx0, . . . , cxn ∈ Z and gcd(cx0, . . . , cxn) = 1. We set

hn(x) = log(maxi=0,...,n |cxi|), c = cx

For example we have

h2([1/2 : 1/3 : 1/5]) = h2([15 : 10 : 6]) = log(15)

Lemma 3.1. Let x = (x0 : . . . : xn) be a point of Pn(Q) and assume that xi ∈ Z
for all i. Then hn(x) ≤ max |xi|.

Proof. This is true because hn(x) is exactly equal to max |xi| divided by the gcd of
the integers xi. �

4. Heights over number fields

Very briefly, suppose we have a number field K. Then we want to define

hn : Pn(K) −→ R≥0

in exactly the same manner as in Section 3. This doesn’t work for the following
two reasons:

(1) since the ring of integers OK isn’t a PID we cannot represent every point
x ∈ Pn(K) by a vector (x0, . . . , xn) with xi ∈ OK and gcd(x0, . . . , xn) = 1,
and

(2) even if we could do this, then what are we going to use for |xi|? Namely,
there are multiple archimedian places and we don’t want to just pick one!
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The standard solution is to choose absolute values || · ||v for every place v of K
satisfying the product formula

∏
v ||c||v = 1 for all c ∈ K∗, and then to set

hn(x) = log
(∏

v
maxi=0,...,n ||xi||v

)
=
∑

v
log (maxi=0,...,n ||xi||v)

whenever x = (x0 : . . . : xn) ∈ Pn(K). See the discussion in Section 15 for a more
general case.

Exercise 4.1. If K = Q and for the p-adic place v we take ||p||v = p−1 and for the
archimedian place v of Q we use the usual absolute value on R, then the formula
above recovers the formula given in Section 3.

Back to our general number field K. We can normalize the choice of the absolute
values || · ||v such that these functions hn agree with the ones in Section 3 via the
inclusion Q ⊂ K, then we find actually height functions

hn : Pn(Q) −→ R≥0

See discussion in lecture and see discussion in Section 19.

5. Heights of rational functions

Let k be a field (for example a finite field). Then we can set K = k(t) the function
field in 1-variable t over k. Exactly as in the case of Q we can define

hn : Pn(K) −→ R≥0

by a procedure involving clearing denominators. Namely, suppose given a point

x = (x0 : . . . : xn) ∈ Pn(K)

Then since k[t] is a PID there is a scalar c = cx ∈ K∗ unique up to k∗ such that
cx0, . . . , cxn ∈ k[t] and gcd(cx0, . . . , cxn) = 1. We set

hn(x) = maxi=0,...,n deg(cxi), c = cx

The result is independent of the choice of c. For example we have

h2([1/t : 1/(t− 1) : 1]) = h2([t− 1 : t : t2 − t]) = 2

6. Heights on function fields on curves

Let C be a nonsingular projective curve over a field k. Set K = k(C). Then we
have an interesting geometric way to define height functions

hn : Pn(K) −→ R

as follows. A point x ∈ Pn(K) is a sequence x = (f0, . . . , fn) of elements of
the function field K of C. Denote V = 〈f0, . . . , fn〉 the k-subvector space of K
generated by f0, . . . , fn. If dimk V = 1, then we set hn(x) = 0. If dimk V > 1, then
in the lectures we constructed an invertible module L ⊂ K generated by f0, . . . , fn.
Then we set

hn(x) = degC(L)

This has the following pleasing geometric interpretation: the point x corresponds
to a unique morphism

x : C −→ Pnk

of varieties over k. Then hn(x) = degC(x∗O(1)).
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Exercise 6.1. If K = k(t) and C = P1
k, then the construction above recovers the

construction in Section 5.

Many of the properties of the height functions hn for function fields of curves can
easily be deduced from this geometric definition and a little bit of geometry.

7. Axiom 1 and the Segre map

Consider the variety X = Pn ×Pn
′

together with the Segre embedding

ψ : X −→ Pnn
′+n+n′

which on coordinates is given by the rule

(x, y) = ((x0 : . . . : xn), (y0 : . . . : yn′)) 7−→ x⊗ y = (x0y0 : . . . : xiyj : . . . : xnyn′)

Furthermore, denote ϕ : X → Pn and ϕ′ : X → Pn
′

the projection morphisms.

Lemma 7.1. With notation as above we have Lϕ⊗Lϕ′ ∼= Lψ as invertible modules

on X = Pn ×Pn
′
.

Proof. Discussed in the lecture. �

Thus if we want our goal to be true, more specifically if we want requirement (2)
to hold in the case described above, we need to asssume

(Axiom 1) For every pair of integers n, n′ ≥ 0 there exists a constant C = C(n, n′) > 0

such that for any points x ∈ Pn(K) and y ∈ Pn
′
(K) we have

|hn(x) + hn′(y)− hnn′+n+n′(x⊗ y)| ≤ C

where x⊗ y is the point described above.

8. Axiom 1 for the rationals

This is true because suppose that we have (x0, . . . , xn) ∈ Zn+1 with gcd(x0, . . . , xn) =

1 and that we have (y0, . . . , yn′) ∈ Zn
′+1 with gcd(y0, . . . , yn) = 1. Then of course

we have that xiyj ∈ Z and gcd(xiyj) = 1. Thus we see that

hnn′+n+n′(x⊗ y) = log max |xiyj |
= log(max |xi|)(max |yj |))
= log(max |xi|) + log(max |yj |)
= hn(x) + hn′(y)

and we have equality on the nose!

9. Axiom 1 for the rational functions

Here K = k(t) and we can argue in exactly the same manner as in the case of the
rational numbers.
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10. Axiom 2 and change of coordinates

Consider the variety X = Pn. Consider a linear morphism

ψ : X −→ Pm

given by a matrix A = (aij) on coordinates as follows

x = (x0 : . . . : xn) 7−→ Ax = (
∑

a0ixi :
∑

a1ixi : . . . :
∑

amixi)

For this to make sense we need to make sure that there is no point x such that the
output has all vanishing cooridates. In other words, we need to assume that the
rank of the (m+ 1)× (n+ 1)-matrix A has rank n+ 1. (In particular, this implies
that m ≥ n of course.)

Lemma 10.1. With notation as above we have OPn(1) ∼= Lψ as invertible modules
on X = Pn.

Proof. Discussed in the lecture. �

Thus if we want our goal to be true, more specifically if we want requirement (1) to
hold for X = Pn, for ϕ = idX , for ψ : X → Pm a linear morphism, then we need
to asssume

(Axiom 2) For every pair of integers m ≥ n ≥ 0 and for A ∈ Mat((m+1)× (n+1),K)
of maximal rank, there exists a constant C = C(A,n,m) > 0 such that for
any point x ∈ Pn(K) we have

|hn(x)− hm(Ax)| ≤ C

where Ax is the point described above.

It turns out that we can reduce this a bit further.

Lemma 10.2. In the situation above Axiom 2 holds if and only if the following
conditions are satisfied

(1) For every pair of integers m ≥ n ≥ 0 there exists a constant C = C(n,m) >
0 such that for all x ∈ Pn(K) we have

|hn(x0 : . . . : xn)− hm(x0 : . . . : xn : 0 : . . . : 0)| ≤ C

(2) For every n ≥ i ≥ 0 and c ∈ K∗ there exists a constant C = C(n, i, c) such
that for all x ∈ Pn(K) we have

|hn(x0 : . . . : xn)− hn(x0 : . . . : cxi : . . . : xn)| ≤ C

(3) For every n > 0, i, j ∈ {0, . . . , n}, i 6= j and λ ∈ K∗ there exists a constant
C = C(n, i, j, λ) such that for all x ∈ Pn(K) we have

|hn(x0 : . . . : xn)− hn(x0 : . . . : xi + λxj : . . . : xn)| ≤ C

Proof. See lectures. Hint: any square invertible matrix can be written as a product
of elementary matrices. �
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11. Axiom 2 for the rationals

Consider a pair of integers m ≥ n ≥ 0 and a matrix A ∈ Mat((m+ 1)× (n+ 1),Q)
of maximal rank. Let d ≥ 1 be a common denominator for the coefficients of A, so
dA has integer entries. Then we see that for x ∈ Pn(Q) the vectors

Ax and (dA)x

define the same point in Pm(Q). Thus we may assume A has coefficients in Z.

Assume A has coefficients aij in Z. Choose C ≥ 0 such that |aij | ≤ C for all i, j.
Suppose that we have x = (x0, . . . , xn) ∈ Zn+1 with gcd(x0, . . . , xn) = 1. Then we
see that

hm(Ax) ≤ log(maxj=0,...,m |
∑

i
ajixi|)

≤ log((n+ 1)C maxi=0,...,n |xi|)
= log((n+ 1)C) + hn(x)

Here the first inequality is Lemma 3.1. This gives us one of the two inequalities.

For the other inequality, since the integer matrix A has rank m+ 1, it follows from
linear algebra that there exists a (n+1)×(m+1)-matrix B = (bij) with coefficients
in Q such that BA = 1n+1. Choose an integer e ≥ 1 such that ebij ∈ Z. Choose
a C ′ > 0 such that |ebij | ≤ C ′ for all i, j. With x = (x0, . . . , xn) ∈ Zn+1 as above,
writing y = Ax so yj =

∑
i ajixi are in Z, we get

hn(x) = hn(eBAx)

= hn(eBy)

≤ log(maxk=0,...,n |
∑

j
ebkjyj |)

≤ log((m+ 1)C ′maxi=0,...,n |yj |)
= log((m+ 1)C ′) + hm(y)

= log((m+ 1)C ′) + hm(Ax)

Here the first inequality (on the third line) is Lemma 3.1. This proves the other
inequality and the proof of Axiom 2 is done.

12. Axiom 2 for the rational functions

Here K = k(t) and we can argue in exactly the same manner as in the case of the
rational numbers.

13. Useful facts about invertible modules

If X is a projective variety over K we say that an invertible OX -module L is very
ample if there exist sections s0, . . . , sn ∈ Γ(X,L) which generate L such that the
morphism

ϕL,s0,...,sn : X −→ Pn

(discussed in the lectures) is a closed immersion.

Fact I. If L is very ample and if s0, . . . , sn ∈ Γ(X,L) span the K-vector space
Γ(X,L), then s0, . . . , sn generate L and ϕL,s0,...,sn is a closed immersion.

Fact II. For every invertible module L there exist very ample invertible modules
M and N such that L ∼=M⊗N⊗−1.
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Fact III. If L is globally generated and N is very ample, then L⊗N is very ample.

Fact IV. For every invertible module L and global sections s0, . . . , sn which gener-
ate L there exists a very ample invertible module N and global sections t0, . . . , tm ∈
Γ(X,N ) which span the K-vector space Γ(X,N ) and such that sitj span the K-
vector space Γ(X,L ⊗N ).

14. Heights associated to line bundles

In this section we will show: given a field K and a collection of functions hn as
in Section 2 satisfying Axioms 1 and 2 then for every projective variety X and
invertible OX -module L we obtain function hL : X(K) → R well defined up to a
constant1. This construction will satisfy

(1) hO(1) = hn on X = Pn

(2) more generally if L = ϕ∗O(1) then we have hL = hϕ as defined above,
(3) for X and a pair of invertible modules L and L′ we have the equality of

functions hL + hL′ = hL⊗L′ ,
(4) given a morphism f : Y → X of projective varieties we have hf∗L = hL ◦f .

In the rest of this section we explain the construction.

Step 1. Let L be very ample on X. Then we claim that there exists a well defined
function hL : X → R constructed as follows: pick any n ≥ 0 and global sections
s0, . . . , sn ∈ Γ(X,L) which span Γ(X,L) as a K-vector space. By Fact I the
morphism ϕL,s0,...,sn is defined and we may set hL = hn ◦ ϕL,s0,...,sn . Why is this
well defined? To see this it suffices to show that if t0, . . . , tm ∈ Γ(X,L) is a basis
then hn◦ϕL,s0,...,sn−hm◦ϕL,t0,...,tm is bounded. Namely, we can write si =

∑
aijtj .

Since t0, . . . , tm is a basis of and since si span the K-vector space Γ(X,L) we see
that A has maximal rank! We have a commutative diagram

X
ϕL,t0,...,tm

//

ϕL,s0,...,sn
''

Pm

x 7−→Ax
��

Pn

Thus the bound we want follows from Axiom 2.

Step 2. Next, suppose that

(1) L is a invertible module,
(2) s0, . . . , sn ∈ Γ(X,L) are global sections which generate L, and
(3) sn+1, . . . , sn+n′ ∈ Γ(X,L) are some additional global sections.

By Fact III and IV we can find a very ample invertible module N such that L⊗N
is very ample and global sections t0, . . . , tm ∈ Γ(X,N ) which span the K-vector
space Γ(X,N ) and such that sitj span the K-vector space Γ(X,L ⊗N ). Then we
get a commutative diagram

X
(ϕL,si ,ϕN ,tj

)
//

ϕL⊗N ,sitj

55Pn ×Pm // Pnm+n+m

1Technically, the symbol hL is an element of the quotient Maps(X(K),R)/(bounded maps).
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Thus by Axiom 1 we see that

hn ◦ ϕL,s0,...,sn = hL⊗N − hN
up to bounded functions where the functions hL⊗N and hN are as defined in Step
1. But note that the same choice of N , t0, . . . , tm works for L, s0, . . . , sn+n′ . Hence
we also conclude that

hn ◦ ϕL,s0,...,sn − hn+n′ ◦ ϕL,s0,...,sn+n′

is bounded as both are equal to hL⊗N − hN up to bounded functions.

Step 3. Let L be a very ample invertible module and let s0, . . . , sn ∈ Γ(X,L)
are global sections which generate L. Since we can find additional global sec-
tions sn+1, . . . , sn+n′ ∈ Γ(X,L) such that s0, . . . , sn+n′ generate the K-vector space
Γ(X,L) we conclude from Step 2 that

hL − hn ◦ ϕL,s0,...,sn
is bounded where hL is as in Step 1.

Step 4. Let L = N ⊗M with all three invertible modules very ample. Choose a
basis s0, . . . , sn of Γ(X,N ). Choose a basis t0, . . . , tm of Γ(X,M). Then we do not
know if sitj form a basis of Γ(X,N ⊗M) or even if they generate Γ(X,N ⊗M)
as a K-vector space. But we do know that they generate the invertible module
N ⊗M. Hence by Step 3 we conclude that

hL = hnm+n+m ◦ ϕN⊗M,sitj

up to bounded functions. On the other hand we have the commutative diagram

X
(ϕN ,si

,ϕM,tj
)
//

ϕN⊗M,sitj

55Pn ×Pm // Pnm+n+m

Thus by Axiom 1 we see that

hL = hnm+n+m ◦ ϕN⊗M,sitj = hN + hM

up to bounded functions.

Step 5. Next, suppose that L is any invertible module. By Fact II there exist
very ample invertible modules M and N such that L ∼=M⊗N⊗−1. Then we set
hL = hM − hN where hM and hN are as above. To show that this is well defined,
suppose that L ∼= K ⊗ J⊗−1. for another pair of very ample invertible modules K
and J . Then we get

K ⊗N ∼=M⊗J
We know that these are very ample invertible modules by Fact III. Hence by the
previous paragraph we conclude that

ϕK + ϕN = ϕM + ϕJ

up to a bounded function and we conclude that our prescription is well defined.

Step 6. If L and L′ are invertible modules and we write L ∼= M⊗ N⊗−1 and
L′ ∼= K ⊗ J⊗−1 then we see that

L ⊗ L′ = (M⊗K)⊗ (N ⊗ J )⊗−1
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By Fact II the invertible modulesM⊗K and N ⊗J are very ample. We find that
by construction in Step 5 that

hL⊗L′ = hM⊗K − hN⊗J = hM + hK − hN − hJ = hL + hL′

as desired.

Step 7. We still have to prove the functoriality in (4). If L is globally generated,
say by s0, . . . , sn ∈ Γ(X,L) then we see that

ϕL,s0,...,sn ◦ f = ϕf∗L,f∗s0,...,f∗sn

and hence by Step 3 used twice we obtain that hL ◦ f = hf∗L. Since in general we
can write L as a difference of globally generated (very ample) invertible modules we
conclude from the additivity of height functions shown in Step 6 that hL ◦f = hf∗L
holds for an arbitrary invertible module on X.

15. Heights from local functions

In Brian Conrad’s paper ”Chow’s K/k-trace...” and in Moriwaki’s paper ”Arith-
metic height functions...” there is a clever construction2 of heights by analogy with
the number field case.

Let K be a field. Suppose that we have a set M = MK and for each v ∈ M a
function

|| · ||v : K −→ R≥0

We assume

(1) for c ∈ K we have ||c||v = 0⇔ c = 0,
(2) for c, c′ ∈ K we have ||cc′||v = ||c||v||c′||v,
(3) for c ∈ K∗ we have ||c||v = 1 for all but a finite number of v ∈MK and we

have the product formula
∏
v∈M ||c||v = 1.

Then the formula

hn(x) = log
(∏

v
maxi=0,...,n ||xi||v

)
=
∑

v
log (maxi=0,...,n ||xi||v)

whenever x = (x0 : . . . : xn) ∈ Pn(K) is at least well defined. Axiom 1 is automatic
with this choice. If Axiom 2 holds just for the morphism

P1 −→ P1, (1 : a) 7−→ (1 : 1 + a)

then there exists a constant C > 0 such that

(15.0.1)
∑

v
log (||1 + a||v) ≤

∑
v

log(max{1, ||a||v}) + C

for all a ∈ K∗. Thus it appears that we need some way to compare ||1 + a||v in
terms of the maximum of 1 and ||a||v. For example, suppose we have some real
numbers εv ≥ 1 such that

(15.0.2) ||1 + a||v ≤ εv max{1, ||a||v}
for all a ∈ K∗ and such that we have

C =
∑

v∈M
log(εv) <∞

2It seems Moriwaki’s height function actually comes from a slightly more general construction
where the local functions are allowed to take negative values and perhaps do not exactly statisfy

an inequality as in (15.0.2).
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Then we obtain (15.0.1). For example, if || · ||v is an absolute value, then we have
the triangle inequality ||a + b||v ≤ ||a||v + ||b||v and we can take εv = 2. If || · ||v
is a non-Archimedian absolute value, then we have ||a + b||v ≤ max(||a||v, ||b||v)
and we can take εv = 1. Thus if all the || · ||v are absolute values, then we just
need to assume we have only finitely many v ∈M where || · ||v is archmedian (since
otherwise the condition that C < ∞ is violated); of course this is exactly what
happens in the number field case.

Lemma 15.1. Axiom 2 holds if we have constants εv as above.

Proof. We use the criterion of Lemma 10.2. For the linear embeddings Pn → Pm

sending x = (x0 : . . . : xn) to (x0 : . . . : xn : 0 : . . . : 0) we actually have equality
with the definition of hn as above.. The existence of a bound is easy for diagonal
matrices (see lectures for details). Finally, the bound for a morphism of the form

(x0 : . . . : xn) 7−→ (x0 : . . . : xi−1 : xi + λxj : xi+1 : . . . : xn)

where i 6= j is done by a direct computation using the constants εv (see lecture for
details). �

Remark 15.2. Let K be a field. Let || · || : K → R≥0 be a map such that (1) for
c ∈ K we have ||c|| = 0 ⇔ c = 0, (2) for c, c′ ∈ K we have ||cc′|| = ||c|| · ||c′||,
and (3) there exists a real number ε ≥ 1 such that ||1 + a|| ≤ εmax{1, ||a||} for all
a ∈ K∗. I don’t have an example of this where || · || isn’t a power of an absolute
value. Do you?

16. Positivity

In the rational number field and rational function field cases the functions we have
constructed have nonnegative values. However, in those cases it turns out we have
the following even stronger fact.

Lemma 16.1. Let K = Q or K = k(t) with hn as constructed in Section 3 or
5. Given X and L denote B ⊂ X the base locus of of L. Then hL restricted to
X(K) \B(K) is bounded from below3.

Proof. See discussion in lecture �

17. Points of bounded height

If K = Q or K = k(t) with k finite(!) the sets

{x ∈ Pn(K) : hn(x) ≤ C}
are finite for any real number C. See discussion in lecture.

18. Heights and abelian varieties

Let K be a field and let {hn} be a collection of functions satisfying axioms 1 and
2. Let X be an abelian variety over K. Recall that this means X is a smooth
projective variety over K, we are given a K-rational point O ∈ X(K), we are given
a morphism m : X ×X → X of varieties over K, and we are given an isomorphism
i : X → X such that

(1) m(x,m(y, z)) = m(m(x, y), z) for all scheme valued points x, y, z of X,

3Since our functions are only well defined up to a constant, this is the best we can ask for.
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(2) m(x,O) = m(O, x) = x for all scheme valued points x of X,
(3) m(i(x), x) = m(x, i(x)) = O for all scheme valued points x of X.

Under these assumptions it is always the case that m(x, y) = m(y, x). Thus we
write m(x, y) = x+ y and i(x) = −x.

Fact. For any invertible module L on X we have

OX×X×X ∼= m∗123L ⊗m∗12L⊗−1 ⊗m∗13L⊗−1 ⊗m∗23L⊗−1 ⊗ p∗1L ⊗ p∗2L ⊗ p∗3L

where the morphisms m123,m12, . . . : X ×X ×X → X are the following ones

m123(x, y, z) = x+ y + z, m12(x, y, z) = x+ y

similarly for m13 and m23 and p1, p2, and p3 are the projections.

Conclusion: from our height machine in Section 14 we see immediately that there
exists a constant C = C(X,L) such that

|hL(x+ y + z)− hL(x+ y)− hL(x+ z)− hL(y + z) + hL(x) + hL(y) + hL(z)| < C

for all x, y, z ∈ X(K). This isn’t quite enough to show that hL is a quadratic
function up to a bounded function. However, suppose that i∗L ∼= L; we will say L
is symmetric. Then we also have a constant C ′ such that

|hL(x)− hL(−x)| < C ′

for all x ∈ X(K) since −x = i(x) by our conventions above.

Writing out what the long equality above means for x, y, z = x, x,−x and using the
bound from symmetry of L in the previous paragraph we obtain

|hL(2x)− 4hL(x)| < C + C ′

for all x ∈ X(K). This suggests considering for n ≥ 1 the function

gn : X(K)→ R, gn(x) =
hL(2nx)

4n

Then one shows

(1) |gn(O)| ≤ |hL(O)|/4n,
(2) |hL(x)− gn(x)| ≤ C + C ′ for all n for all x ∈ X(K),
(3) we have

|gn(x+ y+ z)− gn(x+ y)− gn(x+ z)− gn(y+ z) + gn(x) + gn(y) + gn(z)| < C/4n

for all x, y, z ∈ X(K),
(4) we have |gn(x)− gn(−x)| < C ′/4n for all x ∈ X(K), and
(5) |gn(2x)− 4gn(x)| < (C + C ′)/4n for all x ∈ X(K).

Then for any finitely generated subgroup A ⊂ X(K) we can pick a sequence n1 <
n2 < n3 < . . . such that gni

|A converges to a function g which is quadratic, i.e.,
satisfies g(O) = 0, g(−x) = g(x), and the map 〈, 〉 : A2 → R given by 〈x, y〉 = g(x+
y) − g(x) − g(y) is symmetric bilinear4. Conversely, we then have g(x) = 1

2 〈x, x〉.
Now note that the bilinear from 〈, 〉 on A is the unique bilinear map such that

A→ R, x 7−→ hL(x)− 1

2
〈x, x〉 = hL(x)− g(x)

4Because we have 〈x + y, z〉 − 〈x, z〉 − 〈y, z〉 = g(x + y + z)− g(x + y)− g(x + z)− g(y + z) +
g(x) + g(y) + g(z) which is zero on A3 by our limit construction of g.
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is bounded (the reason being that different quadratic functions have unbounded
difference!). By the way, observe that the bound for |hL(x) − g(x)| is C + C ′

independent of our choice of finitely generated subgroup A. Since X(K) is the union
of its finitely generated subgroups, we conclude g and 〈, 〉 are defined canonically
on all of X(K).

Proposition 18.1. Let X,O,m, i be an abelian variety over K. Let L be a sym-
metric invertible module on X. There exists a uniquely defined symmetric bilinear
form

〈, 〉 : X(K) −→ R

and a constant C > 0 such that

|hL(x)− 1

2
〈x, x〉| < C

for all x ∈ X(K).

Proof. See discussion above. �

Remark 18.2. Given any abelian variety X,O,m, i over a field, it possesses at least
one very ample invertible module which is symmetric. Namely, let N be any very
ample invertible module. Then i∗N is very ample too, because i is an automorphism
of X. By Fact III of Section 13 we see that L = N ⊗ i∗N is very ample. Of course
L is symmetric by construction.

19. Appendix: induced height on the algebraic closure

Don’t read this!

Suppose we have a field K and functions hn satisfying Axioms 1 and 2. Let K be
the algebraic closure of K. It seems that there is a canonical way to extend the
functions hn (modulo bounded functions) to functions

hn : Pn(K) −→ R≥0

satisfying Axioms 1 and 2 although we haven’t found this in the literature. In this
section we discuss how to start doing this.

For example, we can define a map

h1 : P1(K) −→ R≥0

as follows. Suppose that x = (x0 : x1) ∈ P1(K). Let d be the minimal degree of
a nonzero homogeneous polynomial F ∈ K[T0, T1] such that F (x0, x1) = 0. Note
that F is unique up to a scalar. For example, if x0 6= 0, then d is the degree of the
field extension of K generated by α = x1/x0 ∈ K and F (1, T ) is a multiple of the
minimal polynomial of α. We write

F = a0T
d
0 + a1T

d−1
0 T1 + . . .+ adT

d
1

for some ai ∈ K. Since F is well defined up to a scalar we see that the point
(a0 : . . . : ad) ∈ Pd(K) is well defined. Then we set

h1(x) =
hd(a0 : . . . : ad)

d
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Example 19.1. If x ∈ P1(K) then d = 1 and we can take F = x1T0 − x0T1 and
we see that

h1(x) = h1(x1 : −x0)

which by Axiom 2 differs from h1(x) by a bounded amount.

Next, consider the surjective finite morphism

π : P1 ×P1 −→ P2, (x, y) 7−→ (x0y0 : x0y1 + x1y0 : x1y1)

By Axioms 1 and 2 we have that h1(x) +h1(y) and h2(π(x, y)) differ by a constant
for x ∈ P1(K) and y ∈ P1(K). Motivated by this we define

h2 : P1(K) −→ R≥0

as follows. Given z ∈ P2(K) pick x ∈ P1(K) and y ∈ P1(K) with π(x, y) = z.
Then we set

h2(z) = h1(x) + h1(y)

Now we have to check something: why is this well defined? Well, since π has degree
2 the only problem is if there is a second point mapping to z by π. But this can only
happen if x 6= y and then the second point is the point (y, x). Since the formula
above is symmetric in x and y this fine.

Example 19.2. Another sanity check is the following: suppose that we look at all
z ∈ P2(K). Then we want to make sure, as in Example 19.1 that h2(z) and h2(z)
have bounded difference. To see this we deal with two cases

(1) (x, y) is in P1(K) × P1(K). In this case h2(z) differs from h1(x) + h1(y)
by a bounded amount, h1(x) differs from h1(x) by a bounded amount, and
h1(y) differs from h1(y) by a bounded amount. Thus this case is fine.

(2) (x, y) is defined over a quadratic extension of K. In this case a calculation
shows the equation F we use to compute h2(x) is

z2T
2
0 − z1T0T1 + z0T

2
1

We conclude that h1(x) = (1/2)h2(z2 : −z1 : z0). The exact same result
holds for y by symmetry. Hence we see that h2(z) = h2(z2 : −z1 : z0) which
differs from h2(z) by a bounded amount.
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