
Name and UNI:

Making, Breaking Codes, Midterm 2

This examination booklet contains 6 problems. Do all of your work on the
pages of this exam booklet. Show all your computations and justify/explain
your answers. Cross out anything you do not want graded.

If there is a mistake in the question or if you are not sure what something means,
just make a guess, explain what is going on in your answer, and continue.

You have about 75 minutes to complete the midterm. Do not begin until in-
structed to do so. When time is up, stop working and close your test booklet.
Books, notes, calculators, cell phones, headphones, laptops, and other electronic
devices are not allowed.
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1. You are given that 350 and 147 have the same square modulo 2059. Use this
information to find a factor of 2059. Show your work.

Since 350 and 147 have the same square modulo 2059 we know that 3502−1472

is zero modulo 2059. Thus we get that (350 − 147)(350 + 147) is divisible by
2059. Thus it is likely that 203 = 350− 147 and 2059 have a factor in common.
Therefore it makes sense to compute

gcd(203, 2059) = gcd(203, 29) = 29

The first equality because 2059 = 10∗203+29 and the second because 29 divides
203. Thus 29 is a divisor of 2059 and the we are done answering the question.
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2. You are given that P = X7 + X3 + X2 + X + 1 in F2[X] is an irreducible
polynomial with coefficients in the field F2 with 2 elements.
(a) What is a multiplicative inverse of X modulo P?

Since we have

P = X7 + X3 + X2 + X + 1 = X(X6 + X2 + X + 1) + 1

we see immediately that the inverse of X mod P is X6 + X2 + X + 1 mod P .

(b) Compute the multiplicative inverse of X2 modulo P .

Method I: the inverse of X2 is the square of the inverse of X. Hence we get

(X6 + X2 + X + 1)2 = X12 + X4 + x2 + 1

because we are working modulo 2. Then we have

X12 = X5X7

= X5(X3 + X2 + X + 1)

= X8 + X7 + X6 + X5

= (X + 1)(X3 + X2 + X + 1) + X6 + X5

= X6 + X5 + X4 + 1 mod P

and hence the final answer is

X6 + X5 + X4 + 1 + X4 + X2 + 1 = X6 + X5 + X2

Method II: we can use the Euclidean algorithm as follows:

X7+X3+X2+X+1 = (X5+X+1)X2+X+1 and X2 = (X+1)(X+1)+1

Doing backsubstitution we get

1 = X2+(X+1)(X+1) = X2+(X+1)(X5+X+1)X2+(X+1)(X7+X3+X2+X+1)

and hence we get that the inverse is

1 + (X + 1)(X5 + X + 1) = X6 + X5 + X2

Method III: we can use the following trick

(X2)−1 = X−1(X6+X2+X+1) = X5+X+1+X−1 = X5+X+1+X6+X2+X+1 = X6+X5+X2 mod P

where we have used the result gotten in (a) twice.
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3. A trusted authority has published a large integer n which is secretly the
product of two distinct large primes. Moreover, they publish an integer y mod
n. Peggy claims she knows a square root s of y mod n. Explain a protocol
that allows Peggy to convince Victor she indeed knows a square root of y mod
n without giving away any information about this square root.

Step 1: Peggy chooses a random number r1 and computes r2 ≡ sr−1
1 (mod n).

Then she computes x1 ≡ r21 (mod n) and x2 ≡ r22 (mod n) and sends x1, x2 to
Victor.

Step 2: Victor verifies that x1x2 ≡ y (modn). If this is the case, then he
chooses one of x1, x2 and asks Peggy to give a square root of it. Then he verifies
if it is actually a square root.

Step 3: Repeat the above steps several times until Victor is convinced.
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4. Fields.
(a) State the definition of a field.

A field is a set F which comes with two special elements 0 and 1 and comes
with an addtion + and a multiplication · such that the following are true:

1. addition and multiplication are associative and commutative,

2. the distributive law holds x · (y + z) = x · y + x · z for all x, y, z ∈ F ,

3. 0 + x = x for all x ∈ F ,

4. every x ∈ F has an additive inverse −x such that x +−x = 0,

5. 1 · x = x for all x ∈ F ,

6. every nonzero x ∈ F has a multiplicative inverse x−1 such that x·x−1 = 1.

(b) Construct a field with 9 elements.

In the course it was explained that F3[X] mod P is a field with 32 = 9 elements if
P is an irreducible monic polynomial of degree 2 in F3[X]. Take P = X2 +1 for
example. It is irreducible as P has no roots in F3 because P (0) = 1, P (1) = 2,
and P (−1) = 2.
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5. Factoring integers using elliptic curves. Let n be an integer.
(a) Explain the steps of the algorithm to factor n using elliptic curves.

Step 1: Choose x0, y0, b ∈ Zn randomly. Then compute

c ≡ y20 − x3
0 − bx0 (mod n).

Thus we have an elliptic curve

E : y2 ≡ x3 + bx + c (mod n)

with the point P = (x0, y0) lying on E.

Step 2: Choose a reasonable bound B that consists of small prime factors.

Step 3: Compute B·P ( mod n) by using the addition formula of elliptic curves.

Step 4: Suppose during the computation of B ·P ( mod n), the slope of a chord
(or tangent) is a rational number of the form u/v with

1. 1 < gcd(v, n) < n. Then stop and output gcd(v, n). This gives a prime
factor of n;

2. gcd(v, n) = n. Then go back to Step 1 (i.e., try a new curve with a new
point on it).

3. gcd(v, n) = 1. Then continue the computation of B · P (mod n).

Step 5: If we can compute B · P (mod n) successfully, then go back to Step
1.

(b) Why is this factoring method more likely to succeed than Pollard’s p − 1
factoring algorithm?

For Pollard’s (p − 1) method, if the procedures fail to give a prime divisor,
the only way is to increase the size of the bound B and retry. If p− 1 consists
of a large prime factor, this process is very inefficient!

For the Elliptic Curve Method, one can carry out the algorithm for various
elliptic curves. Suppose n = pq, where p, q are two distinct prime numbers.
Among a large collection of elliptic curves E, heuristically the order of the
group E(Fp) varies randomly in the range

[p + 1− 2
√
p, p + 1 + 2

√
p]

and it is likely that there exists E such that |E(Fp)| consists of solely small
prime factors. Thus, there is a high chance that |E(Fp)| divides the chosen
bound B and so B · P = ∞ (mod p). Similar discussion holds for E(Fq). This
establishes a huge contrast with Pollard’s (p− 1) method!

Moreover, one expects that p, q act independently and it is likely to encounter
some k ≤ B such that kP = ∞ (mod p) but kP 6= ∞ (mod q) (or vice versa).
In this case, the Elliptic Curve Method outputs a prime factor of n successfully.
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6. You are given that P = X4 + X3 + X2 + X + 1 in F2[X] is an irreducible
polynomial with coefficients in the field F2 with 2 elements. Let F24 be the field
defined by P and denote ω the element of this field determined by X. Let

E : y2 + y = x3 + x + 1

be the elliptic curve over F24

(a) Show that P1 = (ω, ω2 + 1) is a point on E.

Substituting x = ω and y = ω2 + 1 into the equation for E we have to show
that

(ω2 + 1)2 + (ω2 + 1) = ω3 + ω + 1

in our field. This is true because this equation is equivalent to

ω4 + 1 + ω2 + 1 = ω3 + ω + 1

which in turn is equivalent to

ω4 + ω3 + ω2 + ω + 1 = 0

which is true because we are working modulo the polynomial P and ω corre-
sponds to X.

(b) Compute the equation of the line L through P1 and P2 = (ω+1, ω2+ω+1).

The slope of L is gotten by taking the difference of the y-coordinates and dividing
by the difference of the x coordinates. Thus the slope is (ω2 + ω + 1 − (ω2 +
1))/(ω+1−ω) = ω. Since L passes through P1 we must have the line y = ωx+1.

(c) You are given that P2 is also a point on E. Find the third point on the line
L which lies on E.

We fill in the equation of the line L into the equation for E. Then we find

(ωx + 1)2 + ωx + 1 = x3 + x + 1

This is equivalent to

x3 + ω2x2 + (ω + 1)x + 1 = 0

We know that the x-coordinates of P1 and P2 are solutions and hence we see
that the third solution satisfies

ω + (ω + 1) + third solution = ω2

by looking at the coefficient of x2 in the polynomial equation above. Hence this
gives x = ω2 + 1 and substituting into the equation for L we obtain

y = ω(ω2 + 1) + 1 = ω3 + ω + 1
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