The Fourier transform

1 Structure of the group algebra

Before we begin, we make some general remarks about algebras. Let k be a
field and let A be a k-vector space. We say (somewhat informally) that A
is a k-algebra if there is a k-bilinear form A x A — A, whose value at (a,b)
we denote by ab. Bilinearity implies the left and right distributive laws (for
all a,b,a1,as,b1,bs € A)

(a1 + ag)b = a1b + asb;
a(b1 + bg) = abi + abo,

as well as the property that, for all a,b € A and t € k,
(ta)b = a(tb) = t(ab).

Usually we shall just call A an algebra if the field k is clear from the context.
The algebra A is associative if multiplication is associative i.e. for all a, b, ¢ €
A, (ab)e = a(bc), and unital if there is a multiplicative identity, i.e. an
element usually denoted by 1 such that, for all « € A, 1a = al = a. Note
that, in this case, 1 =0 <= A = {0}. Otherwise, the map k¥ — A defined
by t — t-1is injective and identifies k£ with the subset k-1 = {t-1 : ¢t € k} of A.
For us, all algebras will be associative and unital (although there are many
interesting classes of non-associative algebras). A k-algebra homomorphism
f: A — B is a function from A to B which is both a k-linear map and a
ring homomorphism; equivalently, f is k-linear and f(ab) = f(a)f(b) for all
a,b € A. If A and B are unital, then we will also require that f(1) = 1. The
algebra homomorphism f is an isomorphism if it is a bijection. In this case,
f~!is also an algebra homomorphism. A subalgebra A’ of A is defined in
the obvious way, as a vector subspace closed under multiplication. If A is
unital then we also require that 1 € A’. In this case, k- 1 is a subalgebra of
A and is in fact the smallest subalgebra of A.



Definition 1.1. The center ZA of A is the set of elements which commute
with every element of A:

ZA={a€ A:ab=baforall be A}.

It is easy to check from the definitions that ZA is a subalgebra of A. Note
that, if A is unital, then 1 € ZA, and more generally the subalgebra k - 1 is
contained in ZA.

Example 1.2. 1) The set My(k) of d x d matrices with coefficients in &
is an associative, unital k-algebra, with multiplicative identity the identity
matrix I. It is a linear algebra fact that the center of My(k) is exactly
k-I={tl:tek}. Inother words, the only d x d matrices which commute
with all d x d matrices are scalar multiples of the identity matrix.

2) The group algebra k[G] is an associative, unital k-algebra, with multi-
plicative identity 1 = 1 -1, where the first 1 is the multiplicative identity in
k and the second is the multiplicative identity in G. We can identify k[G]
with L?(G) (for k = C) and multiplication with convolution of functions.
We shall describe the center of k[G] shortly.

3) Given two algebras A; and Ay, we can define the product algebra A; x As
to be the Cartesian product as a vector space together with componentwise
multiplication, i.e. given by

(a1,a2)(b1,b2) = (a1b1, agbs).

Perhaps confusingly, we write the product algebra as Ay x As and not A; &
Ao, because the product algebra as we have defined it is a product in the
category of k-algebras, not a coproduct. (The coproduct of A; and Aj is
A1®As.) Concretely, what this means is that, if A is an algebra and fi: A —
Aj and fa: A — Aj are algebra homomorphisms, then (f1, f2): A — A; x As
is an algebra homomorphism, and every algebra homomorphism from A to
Aq X As arises in this way.

It is easy to see that A1 x A, is associative <= A; and A are associa-
tive, and that A; x As is unital <= A; and Ay are unital, in which case the
multiplicative identity in Ay X Ag is (1,1). Finally, the center Z(A; x Asg)
is ZA1 X ZA2

Definition 1.3. Let A be an associative and unital k-algebra. A repre-
sentation of A on a vector space V is a k-algebra homomorphism p: A —
EndV = Hom(V, V).

Note that, if ¢t € k, then p(ta)(v) = t(p(a))(v) = t(p(a)(v)). In particu-
lar, since A is unital, p(¢-1)(v) = tv and so the representation is compatible



with, and determines, the vector space structure on V in the obvious sense.
Using this, it is straightforward to show that a representation of A on V is
the same thing as a (left) A-module V.

Now suppose that G is a finite group and that py is a G-representation.
We claim that there is a natural way to extend py to give a representation
of the group algebra C[G] (also denoted py ) as follows: define

PV(Z tg-g) = Z tepv(g) € End V.
geG geG
Viewing C[G] as L?(G), this formula gives
pv(f) =Y _ flg)pv(g) = Fyy,
geG

in the notation of the handout “Characters I1,” p. 1.

Lemma 1.4. With notation as above, py is an algebra homomorphism from

C[G] to End V.

Proof. This is essentially just a consequence of the way multiplication is
defined in C[G]. We have

pv Y te g seog|=pv D D0 then |9

geG geG geG \hi1ha=g
= Z Z thyShy pV(g)'
g€G \ hiha=g

On the other hand,

v D tgg|ov D sera| =D tarvio) | | D servie)

9eG geqG geG geG
= > twsov()pv(he) = D tryswpv(hihs).
h1,h2€G h1,h2€G

By grouping together all the terms ¢, sp,py (hi1h2) in the last summation
for which hiho = g, we have

D tmsmpv(hiha) =Y | Y twysn | - pv(9).

h1,h2€G g€G \ hi1ha=g

Comparing, we see that py is a homomorphism as desired. O



Remark 1.5. 1) In fact, every algebra representation of C[G], i.e. every
algebra homomorphism from C[G]| to EndV where V is a vector space,
arises in this way: given an algebra homomorphism py : C[G] — End V', we
can restrict py to G C C[G]. Then py(g) is invertible, since py (g)py (g7!) =
pv(g9™1) = py(1) = Id, and then clearly the restriction of py to G defines
a homomorphism G — Aut V.

2) Viewing C[G] as L*(G), the lemma says that, for all f1, fo € L*(G),

pv(fi1* f2) = pv(f1) - pv(f2),

where the last product is composition in End V' (or matrix multiplication
after choosing a basis to identify End V' with My(C)).

3) If V and W are two representations, then we can define
(pv,pw): C[G] = EndV x End W

as in Example 1.2(3). There is also a natural algebra homomorphism
EndV x End W — End(V @ W)

which sends a pair (F7, F») to the linear map F; @ F» (compare the handout
on linear algebra, comment after Remark 7.4). Clearly the composition

ClG] YY), End v x End W — End(V & W)

Is pvew.

Example 1.6. 1) For the trivial representation p = pc(1y, p(g) = 1 € C for
every g € G. Hence p(3_ cqty - 9) = X eqty, and it is not hard to check
directly that this defines a C-algebra homomorphism from C[G] to C.

2) Let V = C|[G] be the regular representation, so that py = preg. Then we
claim that preg(ar): C[G] — C[G] is left multiplication by a:

Preg(@)(B) = ap.

To see this, first suppose that a = g and that 8 =), s, - h. Then

pv(9)(B) = pv(9) (Z Sh- h) = sn-(gh),

heG heG



by the definition of the regular representation. Thus py (g)(5) = ¢+ by the
definition of multiplication in C[G]. The case where v = }° tg - g then
follows since

preg Z tng ) = Ztg(g ﬁ)

geG geG
Ztgg 'B:a'ﬁ7
geG

since multiplication in C[G] distributes over addition.

For a finite group G, let V1,..., V) denote the distinct irreducible repre-
sentations of G up to isomorphism. If d; = dimV;, then End V; = My, (C)
after we have chosen a basis. For each ¢, we have the C-algebra homomor-
phism py; : C[G] — End V; and hence the C-algebra homomorphism

p=(pvis---spv,): C[G] = End Vi x -+ x End V}, = Mg, (C) x - - - x Mg, (C),

where the above isomorphism is of C-algebras (and the products are given
the product algebra structure as described in Example 1.2 (3). Viewing
C[G] as L*(@), we denote the image p(f) of f by f and call it the Fourier
transform of f, for reasons which we will explain later. Note that m =
fl fg, which just says that p is an algebra homomorphism.

Theorem 1.7 (Wedderburn). The map p is an isomorphism. In particular,
as C-algebras,

ClG] =My, (C) x --- x My, (C).

Proof. First, since p is a homomorphism, it suffices to show that it is a
bijection. Next,

dim C[G] ZCF dim (Mg, (C) x --- x My, (C)).

As p is a linear map between two finite dimensional vector spaces of the
same dimension, p is a bijection <= p is injective <= Kerp = 0.

Thus assume that p(a) = 0. We must show that o = 0. By definition,
pv,(a)) = 0 for every irreducible representation V;. Using (3) of Remark 1.5,
it then follows that py(a) = 0 for every representation V. In particu-
lar, taking V' = C[G], viewed as the regular representation, it follows that
preg(c) = 0. By Example 1.6(2), this says that multiplication by a on C[G]



is identically 0, i.e. - 8 = 0 for all § € C[G|. Taking 8 = 1, we see that
0 =a-1= a Hence a = 0. It follows that p is injective and thus an
isomorphism. O

Remark 1.8. If k has characteristic zero but is not necessarily algebraically
closed, then one can show that, as k-algebras,

k[G] &= My, (D1) x -+ - X My, (Dg),

where the D, are division algebras, possibly fields, containing k. For exam-
ple, ,
QIZ/nZ] = Q x Q(&*™/™).

It is also possible for non-commutative division algebras to appear. For
example, if @) is the quaternion group, then

R[Q] = R* x H.

Next, we relate the isomorphism in Wedderburn’s theorem to the center
of C[G]. We have stated (without proof) that the center of My(C) is C - Id.
Thus the center of My, (C) X --- x My, (C) is C-Id x --- x C-1d. As for C[G],
it is a little easier to describe its center using the incarnation C[G] = L?(G).

Proposition 1.9. The center of L?>(G) under the operation of convolution
is the vector subspace Z of class functions.

Proof. Since {6, : * € G} is a basis for L?(G), a function f € L*(G) is
in the center of L?(G) <= forallz € G, §, x f = f* 6, <= for all
x € Gandall g€ G, d,*f(g) = f*0:(g). We have seen in the HW that
8. * f(g) = f(x71g) and that f xd,(g) = f(gz~'). Thus f is in the center
of [(G) <= forall z,g € G, f(z7'g) = f(gv~!) <= forall 2,9 € G,
f(zg) = f(gz) (replacing 27! by ) <= f is a class function. O

Via the isomorphism p, the center of C[G] has to correspond to the center
of Mg, (C) x - - - x My, (C). In fact, we have already computed the image p(f)
of a class function f, in Proposition 1.3 of the handout “Characters II:”

p(f) = (t11d,... t,1d),
#(G){f: Xv,)

where t; = ————"2,
% dz
To conclude this section, we give a formula for p~—!:



Proposition 1.10 (Fourier inversion). Given (Ai,...,Ap) € End Vi x---x

End Vj, & Mg, (C) x -+ x My, (C), p~Y(Ay,...,Ap) = >_gtg g, where

1 & _
ty = e ;di Tr(pv, (9~ ") Ad).

Proof. By linearity, it is enough to check this formula for (Ay,...,Ap) =
p(x) = p(dz), identifying the basis vector z € C[G] with the basis element
5z € L*(G). In other words, we can take A; = py;(z). Then

Tr(pv, (97 ") As) = Tr(pv, (97 ) pvi () = Tr(py, (9~ x)) = xvi (9~ ),

and so we want to show that ¢, = 1 if ¢ = x and t;, = 0 otherwise, where

1 <& .
th#(G);dixvi(g z).

But as Z?Zl d;XVv;, = Xreg is the character of the regular representation,

lg =1,

h .
_ #(G), ifg™
d; 7,( lx):{
; xvi(g

0, otherwise.

This implies that ¢, = 1 if g 'z =1,ie g == and ty = 0 otherwise, as
claimed. ]

2 A basis for L*(G)

We have seen that the characters of the distinct irreducible representations
are a unitary basis for the space of class functions. It is natural to ask if
we can use representation theory to find a basis for all of L?(G). We shall
outline how to do so.

Lemma 2.1. Let V and W be two irreducible G-representations and let
F:V — W be a linear map. Define

p(F) = #(1(;) ;pw(g) o Fopy(g)".

Then:

(i) If V and W are not isomorphic, then p(F) = 0.



(il) If V. =W, then
Tr F

dimV

p(F) = Id.

Proof. (i) We have seen that p is a projection onto HomG(V, W). But if V
and W are not isomorphic, then Hom®(V, W) = 0 by Schur’s lemma. Thus
p(F) = 0.

(ii) Again by Schur’s lemma, if V is irreducible, then Hom®(V, W) = C - Id.
Thus p(F') = t1d for some t € C. Taking the trace, we see that

Tr(p(F)) = Tr(t1d) = tdim V.
On the other hand,
Tr(p(F)) = - Y Tr(pv(g) o F o py(g) ZTrF
geG gEG

using the identity that Tr(ABA~!) = Tr B for every invertible matrix A.
Thus Tr(p(F)) = TrF. Comparing this with Tr(p(F)) = tdimV gives
t = Tr F/ dim V', which is the formula of (ii). O

We now interpret the lemma in terms of the matrix coefficients of py (g)
and pw (9):

Corollary 2.2. Let V and W be two irreducible G-representations and sup-

pose that v1,...,vq is a basis for V and w1,...,we is a basis for W. For
g € G, let py(g)i; be the (i, j)™ entry in the matriz for py(g) corresponding
to the basis vi,...,vq, and similarly for pw(g)i;. Then

(i) If V and W are not isomorphic, then, for alli,j, 1 <i,57 <d and all
k.l, 1<k /l<e,

Z pv (g zJPW 9kt = 0.
geG

(ii) If V =W and v; = w; for all i, then for alli,j,k, ¢, 1 <i,7,k, ¢ <d,

0, otherwise.

. dfi=landj=k;
ZPV ’L]pV ) {dlmv .



Proof. Let F,s: V. — W be the linear map defined by F,4(v,) = ws and
F.s(v;) =0, i # r. Then a computation shows that

pw(g) o Frs o pv (g Z pv (g™ ripw (9)eswe.

Hence, summing over all g € G and dividing by #(G), we see that

e

p(Frs)(Uz) Z Z PV mpW g) We-

(=1

If V and W are not isomorphic, then, for all r, s, p(F,s) = 0, so p(Fys)(v;) =0
for all 7. This says that, for all r, s, 4, ¢, the coefficient of w; in p(Fs)(v;) is
0, which is (i) (with a different labeling of the indices). As for (ii), we know
that p(F}s) is of the form ¢-Id, in particular it only has nonzero entries along
the diagonal. Moreover, the diagonal entry for v; in py(g)o F,s0py(g) 1 (v;)
is py (g7 ripv(9)is. Again, summing over g € G and dividing by #(G), we
see that

re o if i =j;
ZPV MPV g)]s = {Slmv th .
geG , otherwise.
Since Tr F.s = 0 if r # s and Tr F},, = 1, we get the formula in (ii). O

The appearance of the term py (g_l)ij is hard to exploit, since in general
there is no good formula for py(g~!) in terms of py(g). However, if py(g)
is unitary with respect to the basis vy, ..., vq, then things are much better:

pv(g™") =pvig) ™" ="pv(g)

is the adjoint matrix, and hence

pv(g™ )i = pv(9);

Thus

Z pv (g Dijpw (g Z pv (971 ;iow (9)ke = ((pw )kes (pv') ji)-

In this case, the formulas of (i) and (ii) above read:



(i) If V and W are not isomorphic, then, for all 7,5, 1 <i,j < d and all
ket 1<k (<e,
{((pw)ke, (pv)ji) = 0.

(ii) IV =W and v; = w; for all i, then for all 7,5, k, ¢, 1 <i,5,k, £ <d,

. ifi=/(and j=k;
((pv)ke, (pv)ji) = ¢ dmV .
0, otherwise.

Summarizing, we obtain:

Theorem 2.3. Let Vq,...,V}, be the distinct irreducible representations of
G up to isomorphism and let d; = dimV;. We suppose that, for each i,
we have chosen a G-invariant Hermitian inner product on V; and a unitary
basis vi,...,vq, for this inner product and let (py,(g)rs) be the (unitary)
matriz for py,(g) with respect to this basis. For each i, 1 < i < h and for
r,s with 1 <r,s <d;, set

firs(g) = \/Eip\/i (9)rs-
Then the normalized matriz coefficients fis(g) are a basis for L*(G).

Proof. The calculations above show that the functions f;,  are orthonor-
mal, in the sense that (f;,s, fjtu) = 0 unless i = j, r = t, s = u, and
(firs, firs) = 1. In particular they are linearly independent. But the num-
ber of such functions is .7, d? = #(G), and so they must be a basis for

1=1"

L?(G). O

Remark 2.4. For every representation V of GG, a G-invariant positive defi-
nite Hermitian inner product always exists on V: choose an arbitrary pos-
itive definite Hermitian inner product Hy on V and average over G, i.e.
set

H(v,w) = #(1(;) S Holpv () (v), pv (9) (w)-

geG

It is clear that H is a positive definite Hermitian inner product, and the
usual arguments show that H is G-invariant, i.e. that

H(py(9)(v), pv(g)(w)) = H(v,w)

for all v,w € V and g € G. Thus the matrices for py(g) with respect to a
unitary basis are unitary.

10



The G-invariant positive definite Hermitian inner product H is not nec-
essarily unique. However, if V' is irreducible, then an argument with Schur’s
lemma shows that every other G-invariant positive definite Hermitian inner
product H' is of the form tH for some positive real number ¢t. However, we
omit the details.

3 The Fourier transform for finite abelian groups

In this section, we assume that G is a finite abelian group.

Definition 3.1. The dual group G is the set of homomorphisms A: G — C*.
Thus in particular G C L?(G). It is easy to check that (for an arbitrary, not
necessarily abelian group G) that Gisa group under pointwise multiplica-
tion of homomorphisms, i.e. if we define the product A;As by

(AM1A2)(g9) = A1(g)A2(9)-

The multiplicative inverse of A is A™! = 1/\ (not the inverse function!),
which is again a homomorphism from G to C*. Note that, as A(g) has finite
order, \(g) has absolute value one, and hence A~! = \.

Beginning with the next lemma, however, we strongly use the fact that
G is abelian.

Lemma 3.2. #(é) = #(G). Moreover, the \ € G are a unitary basis of
L?(G) with respect to the Hermitian inner product.

Proof. For a finite abelian group G, if Vi,...,V} are the irreducible repre-
sentations, with d; = dim V;, then we have seen that d; = 1 for all 7 and that
h = #(G). Then the V; are necessarily of the form C();), A; € G and each
element of G appears exactly once as a A;. Thus h = #(G) = #(Q).

To see the final statement, we know that, for a general finite group G, the
characters are a basis for the space of class functions. For an abelian group,
a character is just an element of G and a class function is just a function, so
that G is a basis of L2(G). It is a unitary basis by the orthogonality relations
for characters (or by an easy direct argument in this case): (u, \) = 1if A = p
and (p, A) = 0 otherwise. O

Example 3.3. For G = Z/nZ, every homomorphism \: Z/nZ — C* is of
the form A, (here a is an integer mod n), where

/\a(k) _ eQm’ak/n'

11



In particular, A\,(1) = e2mia/n ig an element of u,, ie. an element of C* of
order n, which determines and is determined by the homomorphism. Also,
by the rules of exponents Ay - Ay = Agyp, and \y =1 <= a =0 as an
element of Z/nZ. Thus a — A, is an isomorphism from Z/nZ to m

More generally, every finite abelian group G is isomorphic to @, but
there is no “natural” choice of isomorphism.

Definition 3.4. For a finite abelian group G, and a function f € L*(@),
we define the Fourier transform f € L*(G) by:

FO) =" F9)Mg) = #(G)(f, \).

geG

Thus the Fourier transform is a linear map FT': L?(G) — LQ(@).

Remark 3.5. Other normalizations are also possible. For example, one
could define f(A) to be (f,A) or (f,\), with minor changes in the formulas
below. In fact, we will use a different normalization in the nonabelian case.

The main point in what follows is that there are two different and in-
teresting bases for L?(G). The first is {0, : * € X}. This is almost but
not quite unitary with respect to the Hermitian inner product on L?(G): in

fact,
0, if z # y;
<5ma6y> = { 1 T
#op fr=y

The second basis is the unitary basis G. Given f € L*(G), the coefficient
of f with respect to the basis element §, for the basis {0, : + € X} is by
definition f(z). The coefficient of f with respect to the basis element A for

the unitary basis G is .

In much of what follows, the arguments will boil down to comparing these
two different descriptions of a function f.

Example 3.6. (1) For G = Z/nZ, and using the remarks above to identify
Ao € Z/nZ with a € Z/nZ, we have

n—1

fla) = 37 flye2miakim.

k=0

12



(2) For a general abelian group G and = € G, we have

ox(N) = A(z) = A" a).

Thus 8, = ev, oo = ev,, where ev, € L2(CA¥) is evaluation at z and o: G —
G is complex conjugation of homomorphisms.

(3) Since G C L%(G), we can also form the Fourier transform fi of a u € G.
Claim 3.7. ji = #(G)d,

Proof. By definition, fi(A) = #(G)(u, A). But (u, \) = 6,(N), so that g =
#(G)o,. O

Theorem 3.8. For all f, f1, fo € L*(G),

i) | f= L Z FOA (Fourier inversion)
@ 2
eG
(ii) | (f1, fo) = #(1(;)<f1, f2> (Plancherel formula)
— PPN — 1 o ~
(iii) | f1 * fo = fifo| and| fifo = M(fl * fa)

Proof. (i) Since G is a unitary basis for LQ(G),

F=>(f A= e )Zﬂm.

\eG \eG

(ii) Again using the fact that Gisa unitary basis for L%(G),

(fr, f2) =D {fr, N (1, A) = 22f1
e@ xeG
1 . .
_m<f1,f2>

(iii) In fact, we have essentially proved the first formula, see (2) of Re-
mark 1.5. The point is that, in the abelian case, we have defined p: L?(G) —

C", where h = #(G), by setting pc(y(f) = Xgea F(9)A9) = #(G)(f, N).-

Thus pey(f) = (V). By Remark 1.5, peoy (fi * f2) = pey(f1)ocoy (f2),
and this proves the formula up to conJugatlng A

13



It is however easy to give a direct proof. It suffices by linearity to check
the formula for f; = 6, and fo = f an arbitrary element of L?(G), since the
. are a basis for LQ(G) Recall that (0, * f)( )= f(afl ) Then

5*f fog Zf

geG geG
2) Y flg A@) f(N).
g9eG
But A(z) = 0,()\), by (2) of Example 3.6, and so
5,4 f=b.f

as claimed.
__ To prove the second formula in (iii), it is enough to check it for f; = u €
G C L%(G) and f, = f arbitrary, using the fact that G is a basis for L2(G).

Here uf(g) = p(9)f(g), so that

= ule) @A) =D flg)(u!

geG geG
= f(u'N) =6, % f.
By (3) of Example 3.6, i = #(G)d,. Thus
— 1 .
wf =i f
(G)
as claimed. ]

We give another interpretation of Fourier inversion as follows. Since G
is a finite abelian group, we can consider its dual group G. By a homework
problem, we have the homomorphism ev: G — @ defined by ev(g)(A) =
A(g), and it is an isomorphism. Thus, we can view L2(G) as L2(G) and

must compute the value f on g € G.
Proposition 3.9. f(g) =#(G) f(g™h).

Proof. By definition of the Fourier transform,

=Y fNev(gN) =D FN)A9)

)\GG )\GG
=Y fh =Y f(m) | D Ahg)
\e@ heG heG reG

14



But the sum over all A € G of A(gh) = A~!(gh) is the same as the sum over
all A of A\(gh), so that

3" Alhg) = 3 Alhg) = {jm i oh=1, 10 h= gl

pd pd otherwise.
AeG xeG
Thus f(g) = f(g~)#(G). =

4 The non-abelian case

We will now reinterpret the results of Section 1 in the language of the previ-
ous section. For a finite group G, choose a set of irreducible representations
Vi,...,V, of V in the usual way and set dimV; = d;. We will think of
the set {Vi,...,V;} as the set of irreducible representations of G up to iso-
morphism, and will denote this set by G. Note that, for a nonabelian G,

G is just a set, not a group, and there is no set G. We have defined an
isomorphism

p = (pvl,...,pvh): C[G] —)EndViX‘-'XEnthgMdl(C)X-”XMdh(C),

and will view this rather as an isomorphism from L?(G) to End V; x - -+ x
End V},. The i*® component of p(f) is then

pvi(f) =Fv s =Y f(9)pvi(9).

geG

We think of this as defining a “function” f whose value at Vj is the linear
map py;(f) = Fv,5: Vi = Vi.

This construction differs from the Fourier transform of an abelian group
in two ways: First, in the abelian case, V; is one-dimensional and thus
EndV; can be identified with C, and we can identify the set {Vi,...,V;}
with G. Thus f is defined on G and it has a well-defined value in C, so it
is just a function, i.e. an element of L2(G). Second, we used the normal-
ization f(A) =3 gec | (9)X(g), so the above definition defines what we had

previously defined to be f (A™1), not f (). This is one of many annoying
normalization issues, but we will not try to be consistent here.

Finally, we will define the adjoint *A of an A € End V; = My, (C) by tak-
ing the adjoint with respect to some G-invariant positive definite Hermitian
inner product H on V;, i.e. *A is defined by the property that

H(Av,w) = H(v," Aw)
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for all v,w € V;. As in the discussion in Remark 2.4, such an H exists and
is unique up to multiplication by a positive real number, and the adjoint is
the same for all possible choices of H. In particular, since py;(g) is unitary
with respect to H, we have *py.(g) = py,(g) " .

With this said, we have the non-abelian analogue of Theorem 3.8:

Theorem 4.1. For all f, f1, fo € L*(G),

h
i) | f Z r(pv, (9) "L (V2)) (Fourier inversion)
(ii) [(f1, f2) = Zd Tr( f1 (f1( Vi) (Plancherel formula)
(iii) fiefo=Fifs

Proof. We have proved (i) (in a slightly different notation) in Proposi-
tion 1.10. And (iii) follows from Lemma 1.4 (see also (2) of Remark 1.5).
So we must show (ii). Since {J, : * € G} is a basis for L?(G), it is enough
to check (ii), using the bilinearity of both sides, for f; = 0, and fy = d,, for
all z,y € G. In this case,

1 e
(b0,0) = { FO DT
0, otherwise.

Moreover, by definition, &, (V;) = py,(2). Thus, the right hand side of (ii) is
equal to

h
#(g)QZdiTr(PVi( i) = Zge Zd Tr(pv,(@)pvi(y) ™)
i=1
1
=— N d; Tr(py (zy™))
#(G)2; pv; (zy
1 h 1 1 -1
= e & o) = g™

But Xreg(zy™ 1) = #(G) if = y and xreg(zy ') = 0 otherwise. Thus we see
that the right hand side of (ii) is equal to (6,,d,) as claimed. O
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