
The Fourier transform

1 Structure of the group algebra

Before we begin, we make some general remarks about algebras. Let k be a
field and let A be a k-vector space. We say (somewhat informally) that A
is a k-algebra if there is a k-bilinear form A×A→ A, whose value at (a, b)
we denote by ab. Bilinearity implies the left and right distributive laws (for
all a, b, a1, a2, b1, b2 ∈ A)

(a1 + a2)b = a1b+ a2b;

a(b1 + b2) = ab1 + ab2,

as well as the property that, for all a, b ∈ A and t ∈ k,

(ta)b = a(tb) = t(ab).

Usually we shall just call A an algebra if the field k is clear from the context.
The algebra A is associative if multiplication is associative i.e. for all a, b, c ∈
A, (ab)c = a(bc), and unital if there is a multiplicative identity, i.e. an
element usually denoted by 1 such that, for all a ∈ A, 1a = a1 = a. Note
that, in this case, 1 = 0 ⇐⇒ A = {0}. Otherwise, the map k → A defined
by t 7→ t·1 is injective and identifies k with the subset k·1 = {t·1 : t ∈ k} of A.
For us, all algebras will be associative and unital (although there are many
interesting classes of non-associative algebras). A k-algebra homomorphism
f : A → B is a function from A to B which is both a k-linear map and a
ring homomorphism; equivalently, f is k-linear and f(ab) = f(a)f(b) for all
a, b ∈ A. If A and B are unital, then we will also require that f(1) = 1. The
algebra homomorphism f is an isomorphism if it is a bijection. In this case,
f−1 is also an algebra homomorphism. A subalgebra A′ of A is defined in
the obvious way, as a vector subspace closed under multiplication. If A is
unital then we also require that 1 ∈ A′. In this case, k · 1 is a subalgebra of
A and is in fact the smallest subalgebra of A.
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Definition 1.1. The center ZA of A is the set of elements which commute
with every element of A:

ZA = {a ∈ A : ab = ba for all b ∈ A}.

It is easy to check from the definitions that ZA is a subalgebra of A. Note
that, if A is unital, then 1 ∈ ZA, and more generally the subalgebra k · 1 is
contained in ZA.

Example 1.2. 1) The set Md(k) of d × d matrices with coefficients in k
is an associative, unital k-algebra, with multiplicative identity the identity
matrix I. It is a linear algebra fact that the center of Md(k) is exactly
k · I = {tI : t ∈ k}. In other words, the only d× d matrices which commute
with all d× d matrices are scalar multiples of the identity matrix.

2) The group algebra k[G] is an associative, unital k-algebra, with multi-
plicative identity 1 = 1 · 1, where the first 1 is the multiplicative identity in
k and the second is the multiplicative identity in G. We can identify k[G]
with L2(G) (for k = C) and multiplication with convolution of functions.
We shall describe the center of k[G] shortly.

3) Given two algebras A1 and A2, we can define the product algebra A1×A2

to be the Cartesian product as a vector space together with componentwise
multiplication, i.e. given by

(a1, a2)(b1, b2) = (a1b1, a2b2).

Perhaps confusingly, we write the product algebra as A1×A2 and not A1⊕
A2, because the product algebra as we have defined it is a product in the
category of k-algebras, not a coproduct. (The coproduct of A1 and A2 is
A1⊗A2.) Concretely, what this means is that, if A is an algebra and f1 : A→
A1 and f2 : A→ A2 are algebra homomorphisms, then (f1, f2) : A→ A1×A2

is an algebra homomorphism, and every algebra homomorphism from A to
A1 ×A2 arises in this way.

It is easy to see that A1×A2 is associative ⇐⇒ A1 and A2 are associa-
tive, and that A1×A2 is unital ⇐⇒ A1 and A2 are unital, in which case the
multiplicative identity in A1 × A2 is (1, 1). Finally, the center Z(A1 × A2)
is ZA1 × ZA2.

Definition 1.3. Let A be an associative and unital k-algebra. A repre-
sentation of A on a vector space V is a k-algebra homomorphism ρ : A →
EndV = Hom(V, V ).

Note that, if t ∈ k, then ρ(tα)(v) = t(ρ(α))(v) = t(ρ(α)(v)). In particu-
lar, since A is unital, ρ(t ·1)(v) = tv and so the representation is compatible
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with, and determines, the vector space structure on V in the obvious sense.
Using this, it is straightforward to show that a representation of A on V is
the same thing as a (left) A-module V .

Now suppose that G is a finite group and that ρV is a G-representation.
We claim that there is a natural way to extend ρV to give a representation
of the group algebra C[G] (also denoted ρV ) as follows: define

ρV (
∑
g∈G

tg · g) =
∑
g∈G

tgρV (g) ∈ EndV.

Viewing C[G] as L2(G), this formula gives

ρV (f) =
∑
g∈G

f(g)ρV (g) = FV,f ,

in the notation of the handout “Characters II,” p. 1.

Lemma 1.4. With notation as above, ρV is an algebra homomorphism from
C[G] to EndV .

Proof. This is essentially just a consequence of the way multiplication is
defined in C[G]. We have

ρV

∑
g∈G

tg · g
∑
g∈G

sg · g

 = ρV

∑
g∈G

 ∑
h1h2=g

th1sh2

 · g


=
∑
g∈G

 ∑
h1h2=g

th1sh2

 ρV (g).

On the other hand,

ρV

∑
g∈G

tg · g

 ρV

∑
g∈G

sg · g

 =

∑
g∈G

tgρV (g)

∑
g∈G

sgρV (g)


=

∑
h1,h2∈G

th1sh2ρV (h1)ρV (h2) =
∑

h1,h2∈G
th1sh2ρV (h1h2).

By grouping together all the terms th1sh2ρV (h1h2) in the last summation
for which h1h2 = g, we have

∑
h1,h2∈G

th1sh2ρV (h1h2) =
∑
g∈G

 ∑
h1h2=g

th1sh2

 · ρV (g).

Comparing, we see that ρV is a homomorphism as desired.
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Remark 1.5. 1) In fact, every algebra representation of C[G], i.e. every
algebra homomorphism from C[G] to EndV where V is a vector space,
arises in this way: given an algebra homomorphism ρV : C[G]→ EndV , we
can restrict ρV to G ⊆ C[G]. Then ρV (g) is invertible, since ρV (g)ρV (g−1) =
ρV (gg−1) = ρV (1) = Id, and then clearly the restriction of ρV to G defines
a homomorphism G→ AutV .

2) Viewing C[G] as L2(G), the lemma says that, for all f1, f2 ∈ L2(G),

ρV (f1 ∗ f2) = ρV (f1) · ρV (f2),

where the last product is composition in EndV (or matrix multiplication
after choosing a basis to identify EndV with Md(C)).

3) If V and W are two representations, then we can define

(ρV , ρW ) : C[G]→ EndV × EndW

as in Example 1.2(3). There is also a natural algebra homomorphism

EndV × EndW → End(V ⊕W )

which sends a pair (F1, F2) to the linear map F1⊕F2 (compare the handout
on linear algebra, comment after Remark 7.4). Clearly the composition

C[G]
(ρV ,ρW )−−−−−→ EndV × EndW → End(V ⊕W )

is ρV⊕W .

Example 1.6. 1) For the trivial representation ρ = ρC(1), ρ(g) = 1 ∈ C for
every g ∈ G. Hence ρ(

∑
g∈G tg · g) =

∑
g∈G tg, and it is not hard to check

directly that this defines a C-algebra homomorphism from C[G] to C.

2) Let V = C[G] be the regular representation, so that ρV = ρreg. Then we
claim that ρreg(α) : C[G]→ C[G] is left multiplication by α:

ρreg(α)(β) = αβ.

To see this, first suppose that α = g and that β =
∑

h∈G sh · h. Then

ρV (g)(β) = ρV (g)

(∑
h∈G

sh · h

)
=
∑
h∈G

sh · (gh),
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by the definition of the regular representation. Thus ρV (g)(β) = g ·β by the
definition of multiplication in C[G]. The case where α =

∑
g∈G tg · g then

follows since

ρreg(α)(β) =
∑
g∈G

tgρV (g)(β) =
∑
g∈G

tg(g · β)

=

∑
g∈G

tg · g

 · β = α · β,

since multiplication in C[G] distributes over addition.

For a finite group G, let V1, . . . , Vh denote the distinct irreducible repre-
sentations of G up to isomorphism. If di = dimVi, then EndVi ∼= Mdi(C)
after we have chosen a basis. For each i, we have the C-algebra homomor-
phism ρVi : C[G]→ EndVi and hence the C-algebra homomorphism

ρ = (ρV1 , . . . , ρVh) : C[G]→ EndV1×· · ·×EndVh ∼= Md1(C)×· · ·×Mdh(C),

where the above isomorphism is of C-algebras (and the products are given
the product algebra structure as described in Example 1.2 (3). Viewing
C[G] as L2(G), we denote the image ρ(f) of f by f̂ and call it the Fourier

transform of f , for reasons which we will explain later. Note that f̂1 ∗ f2 =
f̂1f̂2, which just says that ρ is an algebra homomorphism.

Theorem 1.7 (Wedderburn). The map ρ is an isomorphism. In particular,
as C-algebras,

C[G] ∼= Md1(C)× · · · ×Mdh(C).

Proof. First, since ρ is a homomorphism, it suffices to show that it is a
bijection. Next,

dimC[G] = #(G) =

h∑
i=1

d2i = dim(Md1(C)× · · · ×Mdh(C)).

As ρ is a linear map between two finite dimensional vector spaces of the
same dimension, ρ is a bijection ⇐⇒ ρ is injective ⇐⇒ Ker ρ = 0.

Thus assume that ρ(α) = 0. We must show that α = 0. By definition,
ρVi(α) = 0 for every irreducible representation Vi. Using (3) of Remark 1.5,
it then follows that ρV (α) = 0 for every representation V . In particu-
lar, taking V = C[G], viewed as the regular representation, it follows that
ρreg(α) = 0. By Example 1.6(2), this says that multiplication by α on C[G]
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is identically 0, i.e. α · β = 0 for all β ∈ C[G]. Taking β = 1, we see that
0 = α · 1 = α. Hence α = 0. It follows that ρ is injective and thus an
isomorphism.

Remark 1.8. If k has characteristic zero but is not necessarily algebraically
closed, then one can show that, as k-algebras,

k[G] ∼= Mn1(D1)× · · · ×Mnk
(Dk),

where the Dk are division algebras, possibly fields, containing k. For exam-
ple,

Q[Z/nZ] ∼= Q×Q(e2πi/n).

It is also possible for non-commutative division algebras to appear. For
example, if Q is the quaternion group, then

R[Q] ∼= R4 ×H.

Next, we relate the isomorphism in Wedderburn’s theorem to the center
of C[G]. We have stated (without proof) that the center of Md(C) is C · Id.
Thus the center of Md1(C)×· · ·×Mdh(C) is C · Id× · · ·×C · Id. As for C[G],
it is a little easier to describe its center using the incarnation C[G] ∼= L2(G).

Proposition 1.9. The center of L2(G) under the operation of convolution
is the vector subspace Z of class functions.

Proof. Since {δx : x ∈ G} is a basis for L2(G), a function f ∈ L2(G) is
in the center of L2(G) ⇐⇒ for all x ∈ G, δx ∗ f = f ∗ δx ⇐⇒ for all
x ∈ G and all g ∈ G, δx ∗ f(g) = f ∗ δx(g). We have seen in the HW that
δx ∗ f(g) = f(x−1g) and that f ∗ δx(g) = f(gx−1). Thus f is in the center
of L2(G) ⇐⇒ for all x, g ∈ G, f(x−1g) = f(gx−1) ⇐⇒ for all x, g ∈ G,
f(xg) = f(gx) (replacing x−1 by x) ⇐⇒ f is a class function.

Via the isomorphism ρ, the center of C[G] has to correspond to the center
of Md1(C)×· · ·×Mdh(C). In fact, we have already computed the image ρ(f)
of a class function f , in Proposition 1.3 of the handout “Characters II:”

ρ(f) = (t1 Id, . . . , th Id),

where ti =
#(G)〈f, χVi〉

di
.

To conclude this section, we give a formula for ρ−1:
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Proposition 1.10 (Fourier inversion). Given (A1, . . . , Ah) ∈ EndV1×· · ·×
EndVh ∼= Md1(C)× · · · ×Mdh(C), ρ−1(A1, . . . , Ah) =

∑
g tg · g, where

tg =
1

#(G)

h∑
i=1

di Tr(ρVi(g
−1)Ai).

Proof. By linearity, it is enough to check this formula for (A1, . . . , Ah) =
ρ(x) = ρ(δx), identifying the basis vector x ∈ C[G] with the basis element
δx ∈ L2(G). In other words, we can take Ai = ρVi(x). Then

Tr(ρVi(g
−1)Ai) = Tr(ρVi(g

−1)ρVi(x)) = Tr(ρVi(g
−1x)) = χVi(g

−1x),

and so we want to show that tg = 1 if g = x and tg = 0 otherwise, where

tg =
1

#(G)

h∑
i=1

diχVi(g
−1x).

But as
∑h

i=1 diχVi = χreg is the character of the regular representation,

h∑
i=1

diχVi(g
−1x) =

{
#(G), if g−1x = 1;

0, otherwise.

This implies that tg = 1 if g−1x = 1, i.e. g = x, and tg = 0 otherwise, as
claimed.

2 A basis for L2(G)

We have seen that the characters of the distinct irreducible representations
are a unitary basis for the space of class functions. It is natural to ask if
we can use representation theory to find a basis for all of L2(G). We shall
outline how to do so.

Lemma 2.1. Let V and W be two irreducible G-representations and let
F : V →W be a linear map. Define

p(F ) =
1

#(G)

∑
g∈G

ρW (g) ◦ F ◦ ρV (g)−1.

Then:

(i) If V and W are not isomorphic, then p(F ) = 0.
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(ii) If V = W , then

p(F ) =
TrF

dimV
Id .

Proof. (i) We have seen that p is a projection onto HomG(V,W ). But if V
and W are not isomorphic, then HomG(V,W ) = 0 by Schur’s lemma. Thus
p(F ) = 0.

(ii) Again by Schur’s lemma, if V is irreducible, then HomG(V,W ) ∼= C · Id.
Thus p(F ) = t Id for some t ∈ C. Taking the trace, we see that

Tr(p(F )) = Tr(t Id) = t dimV.

On the other hand,

Tr(p(F )) =
1

#(G)

∑
g∈G

Tr(ρV (g) ◦ F ◦ ρV (g)−1) =
1

#(G)

∑
g∈G

TrF,

using the identity that Tr(ABA−1) = TrB for every invertible matrix A.
Thus Tr(p(F )) = TrF . Comparing this with Tr(p(F )) = t dimV gives
t = TrF/ dimV , which is the formula of (ii).

We now interpret the lemma in terms of the matrix coefficients of ρV (g)
and ρW (g):

Corollary 2.2. Let V and W be two irreducible G-representations and sup-
pose that v1, . . . , vd is a basis for V and w1, . . . , we is a basis for W . For
g ∈ G, let ρV (g)ij be the (i, j)th entry in the matrix for ρV (g) corresponding
to the basis v1, . . . , vd, and similarly for ρW (g)ij. Then

(i) If V and W are not isomorphic, then, for all i, j, 1 ≤ i, j ≤ d and all
k, `, 1 ≤ k, ` ≤ e,

1

#(G)

∑
g∈G

ρV (g−1)ijρW (g)k` = 0.

(ii) If V = W and vi = wi for all i, then for all i, j, k, `, 1 ≤ i, j, k, ` ≤ d,

1

#(G)

∑
g∈G

ρV (g−1)ijρV (g)k` =

{
1

dimV , if i = ` and j = k;

0, otherwise.
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Proof. Let Frs : V → W be the linear map defined by Frs(vr) = ws and
Frs(vi) = 0, i 6= r. Then a computation shows that

ρW (g) ◦ Frs ◦ ρV (g)−1(vi) =

e∑
`=1

ρV (g−1)riρW (g)`sw`.

Hence, summing over all g ∈ G and dividing by #(G), we see that

p(Frs)(vi) =
e∑
`=1

 1

#(G)

∑
g∈G

ρV (g−1)riρW (g)`s

w`.

If V andW are not isomorphic, then, for all r, s, p(Frs) = 0, so p(Frs)(vi) = 0
for all i. This says that, for all r, s, i, `, the coefficient of w` in p(Frs)(vi) is
0, which is (i) (with a different labeling of the indices). As for (ii), we know
that p(Frs) is of the form t ·Id, in particular it only has nonzero entries along
the diagonal. Moreover, the diagonal entry for vi in ρV (g)◦Frs ◦ρV (g)−1(vi)
is ρV (g−1)riρV (g)is. Again, summing over g ∈ G and dividing by #(G), we
see that

1

#(G)

∑
g∈G

ρV (g−1)riρV (g)js =

{
TrFrs
dimV , if i = j;

0, otherwise.

Since TrFrs = 0 if r 6= s and TrFrr = 1, we get the formula in (ii).

The appearance of the term ρV (g−1)ij is hard to exploit, since in general
there is no good formula for ρV (g−1) in terms of ρV (g). However, if ρV (g)
is unitary with respect to the basis v1, . . . , vd, then things are much better:

ρV (g−1) = ρV (g)−1 = ∗ρV (g)

is the adjoint matrix, and hence

ρV (g−1)ij = ρV (g)ji.

Thus

1

#(G)

∑
g∈G

ρV (g−1)ijρW (g)k` =
1

#(G)

∑
g∈G

ρV (g−1)jiρW (g)k` = 〈(ρW )k`, (ρV )ji〉.

In this case, the formulas of (i) and (ii) above read:
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(i) If V and W are not isomorphic, then, for all i, j, 1 ≤ i, j ≤ d and all
k, `, 1 ≤ k, ` ≤ e,

〈(ρW )k`, (ρV )ji〉 = 0.

(ii) If V = W and vi = wi for all i, then for all i, j, k, `, 1 ≤ i, j, k, ` ≤ d,

〈(ρV )k`, (ρV )ji〉 =

{
1

dimV , if i = ` and j = k;

0, otherwise.

Summarizing, we obtain:

Theorem 2.3. Let V1, . . . , Vh be the distinct irreducible representations of
G up to isomorphism and let di = dimVi. We suppose that, for each i,
we have chosen a G-invariant Hermitian inner product on Vi and a unitary
basis v1, . . . , vdi for this inner product and let (ρVi(g)rs) be the (unitary)
matrix for ρVi(g) with respect to this basis. For each i, 1 ≤ i ≤ h and for
r, s with 1 ≤ r, s ≤ di, set

fi,r,s(g) =
√
diρVi(g)rs.

Then the normalized matrix coefficients fi,r,s(g) are a basis for L2(G).

Proof. The calculations above show that the functions fi,r,s are orthonor-
mal, in the sense that 〈fi,r,s, fj,t,u〉 = 0 unless i = j, r = t, s = u, and
〈fi,r,s, fi,r,s〉 = 1. In particular they are linearly independent. But the num-

ber of such functions is
∑h

i=1 d
2
i = #(G), and so they must be a basis for

L2(G).

Remark 2.4. For every representation V of G, a G-invariant positive defi-
nite Hermitian inner product always exists on V : choose an arbitrary pos-
itive definite Hermitian inner product H0 on V and average over G, i.e.
set

H(v, w) =
1

#(G)

∑
g∈G

H0(ρV (g)(v), ρV (g)(w)).

It is clear that H is a positive definite Hermitian inner product, and the
usual arguments show that H is G-invariant, i.e. that

H(ρV (g)(v), ρV (g)(w)) = H(v, w)

for all v, w ∈ V and g ∈ G. Thus the matrices for ρV (g) with respect to a
unitary basis are unitary.
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The G-invariant positive definite Hermitian inner product H is not nec-
essarily unique. However, if V is irreducible, then an argument with Schur’s
lemma shows that every other G-invariant positive definite Hermitian inner
product H ′ is of the form tH for some positive real number t. However, we
omit the details.

3 The Fourier transform for finite abelian groups

In this section, we assume that G is a finite abelian group.

Definition 3.1. The dual group Ĝ is the set of homomorphisms λ : G→ C∗.
Thus in particular Ĝ ⊆ L2(G). It is easy to check that (for an arbitrary, not
necessarily abelian group G) that Ĝ is a group under pointwise multiplica-
tion of homomorphisms, i.e. if we define the product λ1λ2 by

(λ1λ2)(g) = λ1(g)λ2(g).

The multiplicative inverse of λ is λ−1 = 1/λ (not the inverse function!),
which is again a homomorphism from G to C∗. Note that, as λ(g) has finite
order, λ(g) has absolute value one, and hence λ−1 = λ.

Beginning with the next lemma, however, we strongly use the fact that
G is abelian.

Lemma 3.2. #(Ĝ) = #(G). Moreover, the λ ∈ Ĝ are a unitary basis of
L2(G) with respect to the Hermitian inner product.

Proof. For a finite abelian group G, if V1, . . . , Vh are the irreducible repre-
sentations, with di = dimVi, then we have seen that di = 1 for all i and that
h = #(G). Then the Vi are necessarily of the form C(λi), λi ∈ Ĝ and each
element of Ĝ appears exactly once as a λi. Thus h = #(Ĝ) = #(G).

To see the final statement, we know that, for a general finite group G, the
characters are a basis for the space of class functions. For an abelian group,
a character is just an element of Ĝ and a class function is just a function, so
that Ĝ is a basis of L2(G). It is a unitary basis by the orthogonality relations
for characters (or by an easy direct argument in this case): 〈µ, λ〉 = 1 if λ = µ
and 〈µ, λ〉 = 0 otherwise.

Example 3.3. For G = Z/nZ, every homomorphism λ : Z/nZ → C∗ is of
the form λa (here a is an integer mod n), where

λa(k) = e2πiak/n.
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In particular, λa(1) = e2πia/n is an element of µn, ie. an element of C∗ of
order n, which determines and is determined by the homomorphism. Also,
by the rules of exponents λa · λb = λa+b, and λa = 1 ⇐⇒ a = 0 as an

element of Z/nZ. Thus a 7→ λa is an isomorphism from Z/nZ to Ẑ/nZ.
More generally, every finite abelian group G is isomorphic to Ĝ, but

there is no “natural” choice of isomorphism.

Definition 3.4. For a finite abelian group G, and a function f ∈ L2(G),
we define the Fourier transform f̂ ∈ L2(Ĝ) by:

f̂(λ) =
∑
g∈G

f(g)λ(g) = #(G)〈f, λ〉.

Thus the Fourier transform is a linear map FT : L2(G)→ L2(Ĝ).

Remark 3.5. Other normalizations are also possible. For example, one
could define f̂(λ) to be 〈f, λ〉 or 〈f, λ̄〉, with minor changes in the formulas
below. In fact, we will use a different normalization in the nonabelian case.

The main point in what follows is that there are two different and in-
teresting bases for L2(G). The first is {δx : x ∈ X}. This is almost but
not quite unitary with respect to the Hermitian inner product on L2(G): in
fact,

〈δx, δy〉 =

{
0, if x 6= y;

1
#(G) , if x = y.

The second basis is the unitary basis Ĝ. Given f ∈ L2(G), the coefficient
of f with respect to the basis element δx for the basis {δx : x ∈ X} is by
definition f(x). The coefficient of f with respect to the basis element λ for
the unitary basis Ĝ is

〈f, λ〉 =
1

#(G)
f̂(λ).

In much of what follows, the arguments will boil down to comparing these
two different descriptions of a function f .

Example 3.6. (1) For G = Z/nZ, and using the remarks above to identify

λa ∈ Ẑ/nZ with a ∈ Z/nZ, we have

f̂(a) =
n−1∑
k=0

f(k)e−2πiak/n.
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(2) For a general abelian group G and x ∈ G, we have

δ̂x(λ) = λ(x) = λ−1(x).

Thus δ̂x = evx ◦σ = evx, where evx ∈ L2(Ĝ) is evaluation at x and σ : Ĝ→
Ĝ is complex conjugation of homomorphisms.

(3) Since Ĝ ⊆ L2(G), we can also form the Fourier transform µ̂ of a µ ∈ Ĝ.

Claim 3.7. µ̂ = #(G)δµ.

Proof. By definition, µ̂(λ) = #(G)〈µ, λ〉. But 〈µ, λ〉 = δµ(λ), so that µ̂ =
#(G)δµ.

Theorem 3.8. For all f, f1, f2 ∈ L2(G),

(i) f =
1

#(G)

∑
λ∈Ĝ

f̂(λ)λ (Fourier inversion)

(ii) 〈f1, f2〉 =
1

#(G)
〈f̂1, f̂2〉 (Plancherel formula)

(iii) f̂1 ∗ f2 = f̂1f̂2 and f̂1f2 =
1

#(G)
(f̂1 ∗ f̂2)

Proof. (i) Since Ĝ is a unitary basis for L2(G),

f =
∑
λ∈Ĝ

〈f, λ〉λ =
1

#(G)

∑
λ∈Ĝ

f̂(λ)λ.

(ii) Again using the fact that Ĝ is a unitary basis for L2(G),

〈f1, f2〉 =
∑
λ∈Ĝ

〈f1, λ〉〈f1, λ〉 =
1

#(G)2

∑
λ∈Ĝ

f̂1(λ)f̂2(λ)

=
1

#(G)
〈f̂1, f̂2〉.

(iii) In fact, we have essentially proved the first formula, see (2) of Re-
mark 1.5. The point is that, in the abelian case, we have defined ρ : L2(G)→
Ch, where h = #(G), by setting ρC(λ)(f) =

∑
g∈G f(g)λ(g) = #(G)〈f, λ〉.

Thus ρC(λ)(f) = f̂(λ). By Remark 1.5, ρC(λ)(f1 ∗ f2) = ρC(λ)(f1)ρC(λ)(f2),
and this proves the formula up to conjugating λ.
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It is however easy to give a direct proof. It suffices by linearity to check
the formula for f1 = δx and f2 = f an arbitrary element of L2(G), since the
δx are a basis for L2(G). Recall that (δx ∗ f)(g) = f(x−1g). Then

δ̂x ∗ f(λ) =
∑
g∈G

f(x−1g)λ(g) =
∑
g∈G

f(g)λ(xg)

= λ(x)
∑
g∈G

f(g)λ(g) = λ(x)f̂(λ).

But λ(x) = δ̂x(λ), by (2) of Example 3.6, and so

δ̂x ∗ f = δ̂xf̂

as claimed.
To prove the second formula in (iii), it is enough to check it for f1 = µ ∈

Ĝ ⊆ L2(G) and f2 = f arbitrary, using the fact that Ĝ is a basis for L2(G).
Here µf(g) = µ(g)f(g), so that

µ̂f(λ) =
∑
g∈G

µ(g)f(g)λ(g) =
∑
g∈G

f(g)(µ−1λ)(g)

= f̂(µ−1λ) = δµ ∗ f̂ .

By (3) of Example 3.6, µ̂ = #(G)δµ. Thus

µ̂f =
1

#(G)
µ̂ ∗ f̂

as claimed.

We give another interpretation of Fourier inversion as follows. Since Ĝ

is a finite abelian group, we can consider its dual group
̂̂
G. By a homework

problem, we have the homomorphism ev : G → ̂̂
G defined by ev(g)(λ) =

λ(g), and it is an isomorphism. Thus, we can view L2(
̂̂
G) as L2(G) and

must compute the value
ˆ̂
f on g ∈ G.

Proposition 3.9.
ˆ̂
f(g) = #(G)f(g−1).

Proof. By definition of the Fourier transform,

ˆ̂
f(g) =

∑
λ∈Ĝ

f̂(λ)ev(g)(λ) =
∑
λ∈Ĝ

f̂(λ)λ(g)

=
∑
λ∈Ĝ

∑
h∈G

f(h)λ(h)λ(g) =
∑
h∈G

f(h)

∑
λ∈Ĝ

λ(hg)

 .
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But the sum over all λ ∈ Ĝ of λ(gh) = λ−1(gh) is the same as the sum over
all λ of λ(gh), so that

∑
λ∈Ĝ

λ(hg) =
∑
λ∈Ĝ

λ(hg) =

{
#(G), if gh = 1, i.e. h = g−1;

0, otherwise.

Thus
ˆ̂
f(g) = f(g−1)#(G).

4 The non-abelian case

We will now reinterpret the results of Section 1 in the language of the previ-
ous section. For a finite group G, choose a set of irreducible representations
V1, . . . , Vh of V in the usual way and set dimVi = di. We will think of
the set {V1, . . . , Vh} as the set of irreducible representations of G up to iso-
morphism, and will denote this set by Ĝ. Note that, for a nonabelian G,

Ĝ is just a set, not a group, and there is no set
̂̂
G. We have defined an

isomorphism

ρ = (ρV1 , . . . , ρVh) : C[G]→ EndV1×· · ·×EndVh ∼= Md1(C)×· · ·×Mdh(C),

and will view this rather as an isomorphism from L2(G) to EndV1 × · · · ×
EndVh. The ith component of ρ(f) is then

ρVi(f) = FVi,f =
∑
g∈G

f(g)ρVi(g).

We think of this as defining a “function” f̂ whose value at Vi is the linear
map ρVi(f) = FVi,f : Vi → Vi.

This construction differs from the Fourier transform of an abelian group
in two ways: First, in the abelian case, Vi is one-dimensional and thus
EndVi can be identified with C, and we can identify the set {V1, . . . , Vh}
with Ĝ. Thus f̂ is defined on Ĝ and it has a well-defined value in C, so it
is just a function, i.e. an element of L2(Ĝ). Second, we used the normal-
ization f̂(λ) =

∑
g∈G f(g)λ(g), so the above definition defines what we had

previously defined to be f̂(λ−1), not f̂(λ). This is one of many annoying
normalization issues, but we will not try to be consistent here.

Finally, we will define the adjoint ∗A of an A ∈ EndVi ∼= Mdi(C) by tak-
ing the adjoint with respect to some G-invariant positive definite Hermitian
inner product H on Vi, i.e. ∗A is defined by the property that

H(Av,w) = H(v, ∗Aw)
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for all v, w ∈ Vi. As in the discussion in Remark 2.4, such an H exists and
is unique up to multiplication by a positive real number, and the adjoint is
the same for all possible choices of H. In particular, since ρVi(g) is unitary
with respect to H, we have ∗ρVi(g) = ρVi(g)−1.

With this said, we have the non-abelian analogue of Theorem 3.8:

Theorem 4.1. For all f, f1, f2 ∈ L2(G),

(i) f =
1

#(G)

h∑
i=1

di Tr(ρVi(g)−1f̂(Vi)) (Fourier inversion)

(ii) 〈f1, f2〉 =
1

#(G)2

h∑
i=1

di Tr(f̂1(Vi) · ∗(f̂1(Vi)) (Plancherel formula)

(iii) f̂1 ∗ f2 = f̂1f̂2

Proof. We have proved (i) (in a slightly different notation) in Proposi-
tion 1.10. And (iii) follows from Lemma 1.4 (see also (2) of Remark 1.5).
So we must show (ii). Since {δx : x ∈ G} is a basis for L2(G), it is enough
to check (ii), using the bilinearity of both sides, for f1 = δx and f2 = δy, for
all x, y ∈ G. In this case,

〈δx, δy〉 =

{
1

#(G) , if x = y;

0, otherwise.

Moreover, by definition, δ̂x(Vi) = ρVi(x). Thus, the right hand side of (ii) is
equal to

1

#(G)2

h∑
i=1

di Tr(ρVi(x) · ∗ρVi(y)) =
1

#(G)2

h∑
i=1

di Tr(ρVi(x)ρVi(y)−1)

=
1

#(G)2

h∑
i=1

di Tr(ρVi(xy
−1))

=
1

#(G)2

h∑
i=1

diχVi(xy
−1) =

1

#(G)2
χreg(xy

−1).

But χreg(xy
−1) = #(G) if x = y and χreg(xy

−1) = 0 otherwise. Thus we see
that the right hand side of (ii) is equal to 〈δx, δy〉 as claimed.
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