Characters 1

Throughout, G denotes a finite group.

1 The character of a representation

Definition 1.1. Let V' (or py) be a G-representation. Then the character
xv (or x,, ) of V' is the function xy: G — C defined by:

xv(g) = Trpyv(9).
Note that, for all g € G, xv(g) is a sum of roots of unity.

Example 1.2. 1. If V is the trivial representation (i.e. dimV = 1 and
pv(g) =1d for all g € G), then xy(g) =1 for all g € G. We sometimes
write x1 or just 1 for this character.

2. More generally, if dim V' = 1 and py(g)(v) = A(g), where A\: G — C* is
a homomorphism, then yy = A. For example, for the one-dimensional
representation V of Z/nZ on C for which \(k) = €2™*/" we have
X (k) = A(k) = e/,

3. The group D,, is generated by elements o and 7, where o is a counter-
clockwise rotation by the angle 27k /n and 7 is reflection in the x-axis.
For the representation of D,, on V = C? for which

)

pv(oh) = Agyin = <cos 2rk/n  —sin 27rk/n>

sin2wk/n  cos2wk/n
ko _ (cos2mk/n  sin2mk/n
pv(0"T) = Bart/n = (sinQﬂ'k/n —cos2rk/n)’
we clearly have:

Xv(O'k) = 2cos 2wk /n; Xv(O'kT) =



For the 2-dimensional representation V' of the quaternion group @ =
{£1, +i,+j, +k} described previously, we have

xv(1l) =2; xv(—1) = —2; xv (Fi) = xv(£j) = xv(E£k) = 0.

For the standard representation of S™ on C", the corresponding char-
acter y satisfies: x(o) is the number of ¢ such that o(i) = i. Hence, if
o =1V is a product of disjoint cycles ~; of lengths ¢; > 1, then

X(@)=n—S1 b

More generally, if X is a G-set and pc[y] is the corresponding permu-
tation representation on C[X], with character xc[x], then

xcpx)(9) = #(X7),

where XY is the fixed set of g: X9 = {z € X : g-o = z}. In particular,
if X = G, where G acts on itself by left multiplication, then C[G] is
the regular representation. We write Xyeg for the character xcjg). For
the left multiplication action, given g € G and = € G, g fixes z, i.e.
gr =x <= g = 1, and the element 1 fixes every z € G. In other
words, G9 = () if g # 1 and G' = G. Thus:

o #(G)7 if g=1;
Xreg(g) = {07 if g 1.

We list some basic properties of characters.

1.

If V is the trivial representation, then xy(g) =1 for all g € G, i.e. xv
is the constant function 1.

. For every representation V,

’XV(l) =dimV = degpy ‘

This follows since py (1) = Id corresponds to the d x d identity matrix
I, where d = dimV = degpy, and Tr 1 = d.

For all g,h € G,

xv(hgh™") = xv(g) |

This follows since by definition

xv(hgh™") = Tr(py (h) o pv(g) o pv(h) ') = Trpv(g) = xv (9)-



4. For every g € G,

wig™) = i)
To see this, note that, for every g € G, py(g) € Aut V has finite order.
Hence py (g) is diagonalizable and its eigenvalues are roots of unity,
in particular complex numbers of absolute value 1. By a homework
problem,

xvig ™) =Trpv(g™") =Trpv(g) " =Trpv(g) = xv(g)-

Next, we see how the character behaves with respect to the standard con-
structions of linear algebra: Suppose that Vi, Vs, and V are G-representations.
Then:

L | xviev, = xvi + X1,

This is an immediate consequence of the formula Tr(F; & Fy) = Tr Fy +
Tr F>. Aplying this inductively, we see that xv,@..cv, = X1+ +XV, -
Also, if welet V' =V @---®V, then xyn = nxy.

—_———

n times
2.
To see this, first recall that Tr F = Tr F*. Now py+(g) = (pv(9)~1)*,
and hence

xve(g) = Tr(py+(9)) = Te((pv (9) ™)) = Tr(pv (9) ") = Tr(pv(9)) = xv(9)-

3. ’XHom(Vl,Vg) = XViXVa

The argument for this is similar to the argument for (2): Suppose that
Fy € Hom(Vi, V1) and that F5 € Hom(Va, V2). Then (F2), 0 (F1)* is a
linear map from Hom(V4, V) to Hom(V3, V). We have, by a homework
problem,

TH(Fy) o (F1)*) = (Tr Fy)(Tr B).

By definition, pgom(vy,15) = (Pv2)s © (p;zl)*. Thus,
Xtom(Vi,v5) (9) = T¥ priom(vi,v5) (9)) = Tr((p12(9))s © (pvi (9) ™))
= Tr(pvz (9)) Tr(pri (9) 7)) = x11 (9)x12 (9)-

4 [Xvievs = XViX1s |
This follows from the fact that Tr(F; ® Fs) = (Tr Fy)(Tr F»).

In particular, we see that the sum, product, and complex conjugates of
characters are characters.



2 Orthogonality relations

There are many identities involving characters which are called orthogonality
relations. To begin, recall that, given a G-representation V', we have defined
a projection map p: V — V& by

1
= Wﬁ%ﬂv(g)( )

We also know that Trp = dim V& by general linear algebra results about
traces. Ccomputing the trace of p in two different ways then gives

dim V% = #(1(;) > xvlg)

Applying this formula to Hom(Vy, V2) gives:

dim Hom®(V3, V3) = wa 9)xva(9) = wa 9)xva(g
gEG QGG

Finally, if V1 and V5 are irreducible, and using Schur’s lemma, this becomes:

Proposition 2.1. If V; and Va are irreducible, then

L if V=V

= dim Hom® (V4, V3) =
ZXVl sz (1, V2) {O, if V1 is not isomorphic to Vs.

gEG

It’s convenient to introduce the G-invariant positive definite Hermitian
inner product on the vector space C(G), viewed as the space L?(G) of func-
tions f: G — C:

(f1, f2) = Zf1

gEG

Thus we can restate the above proposition as: If V7 and V5, are irreducible,
then

1, if Vi = Vo

7 = dim Hom® Vi, Vo) =
(Xvis XV3) (V1,V2) {07 if V4 is not isomorphic to V5




Corollary 2.2. Write V=V{™ & --- @ V", where V; is irreducible, V; is
not isomorphic to Vj if i # j, and V. is shorthand for the direct sum

Vie---aV;.
| ——
m; times

Then

k

(xv,xv) = Zm?

=1

In particular, V' is irreducible <= (xv,xv) = 1.

Proof. By our formulas, yy = Zle m;xv;. Then, expanding out the inner
product gives
Oovoxv) = Y mimg(xv, Xv; )
i?j

As (xv;,xv;) is 1 if i = j and 0 otherwise, the sum becomes } m? as
claimed. The final statement follows since, if the m; are positive integers,
then Ele m% =1 <= k=1 and m; = 1, which clearly happens <— V
is irreducible. O

Corollary 2.3. Write V= V™ & ---® V,"* as in the previous corollary.
Let W be an irreducible representation. Then

0, if W is not isomorphic to V; for any i.

(xw,xv) = {

Hence two representations V. and V' are isomorphic <= xv = xv'. In
other words:

The character xy determines the representation V up to iso-
morphism.

Proof. We have seen that yy = Zle m;Xxv;, and hence

k
Oows xv) = > milxw, xvi)-
i=1

But (xw,xv,) =1 <= W =V}, which can happen for at most one ¢ by the
assumption that Vj is not isomorphic to Vj if i # j. Hence (xw, xv) = m;
if W =V, and (xw, xv) = 0 if W is not isomorphic to any V;.



To see the final statement, clearly, if V= V', then y = xy~. Conversely,
suppose that xy = xy/. Write V=V" &-.- @ V,"* as above. Then

(xvis xvr) = (xvi, xv) = my,

and (xw,xv) = {(xw,xv) = 0 if W is an irreducible representation not
isomorphic to V; for some i. Hence V' = V™ & --- & V,""*, and thus V' =
V. O

Definition 2.4. If V is a representation and W is an irreducible represen-
tation, we define the multiplicity of W in V' to be the nonnegative integer

Oxw, xv)-

3 The regular representation

Our goal now will be to apply the results of the previous section to the reg-
ular representation C[G], whose character xc|g] = Xreg We have computed.

In fact, Xreg(1) = #(G) and xreg(g) =0 if g # 1.

Proposition 3.1. Let W be an irreducible representation. Then

<XWa Xreg> =dimW

Proof. By definition and the above remarks,

1 #(G .
<XWaXreg> = m ;XW(Q)Xreg(g) W = dim W.

Corollary 3.2. Write
CAI=wie...owh,

where the W; are irreducible and, for ¢ # j, W; is not isomorphic to Wj.
Then:

(ii) Ewvery irreducible representation of V' is isomorphic to W; for a unique
1. In particular, there are only finitely many irreducible G-representa-
tions up to isomorphism.



Proof. The first statement follows from the previous proposition and Corol-
lary 2.3. The second follows similarly, since if W is an irreducible represen-
tation, then (xw, Xreg) = dim W > 0 and hence W = W; for some 1. O

Corollary 3.3. If W1,..., W}, are the finitely many distinct irreducible G-
representations up to isomorphism and d; = dim W;, then

h
> di = #(G)
=1

h .
) . #(G)v 'Lfg = 1;
;deWi(g)— {07 ifg;él.

Proof. We prove the second identity first. Since C[G] = W @ - .. & W,

h
Xreg = Z:deWZ
=1

The result then follows from our calculation of x;eg. The first identity is
then a consequence, since, for every i, xw,(1) = dim W; = d;. O



