
Characters II: Class functions

1 Class functions

Definition 1.1. A function f : G → C is a class function or central if, for
all g, x ∈ G, f(xgx−1) = f(g) ⇐⇒ for all g, x ∈ G, f(xg) = f(gx).
Equivalently, f is constant on conjugacy classes of G, i.e. y ∈ C(x) =⇒
f(y) = f(x). We define Z ⊆ L2(G) = C[G] to be the vector space of all
class functions.

Note that the positive definite Hermitian inner product 〈·, ·〉 on L2(G)
defines a positive definite Hermitian inner product 〈·, ·〉 on Z by restriction.

Example 1.2. 1) If V is a G-representation and χV is its character, then
χV is a class function.

2) Let x ∈ G and let C(x) be the conjugacy class of x. Define the charac-
teristic function fC(x) as follows:

fC(x)(g) =

{
1, if g ∈ C(x);

0, if g /∈ C(x).

Then fC(x) is a class function and the set of fC(x) is clearly a basis for Z.
It is an orthogonal basis of Z with respect to the Hermitian inner product,
i.e. 〈fC(x), fC(y)〉 = 0 if C(x) 6= C(y), but it is not unitary as

〈fC(x), fC(x)〉 =
#(C(x))

#(G)
.

Finally, it is clear that dimZ is equal to the number of conjugacy classes of
G, since the fC(x) are a basis for Z.

Let V be a G-representation and let f : G → C be a function. Define a
linear map FV,f : V → V by:

FV,f =
∑
g∈G

f(g)ρV (g).

Clearly, if V ∼= V1 ⊕ V2, then FV1⊕V2,f = FV1,f ⊕ FV2,f .
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Proposition 1.3. Let f : G → C be a class function, and let V be an
irreducible G-representation. If FV,f is defined as above, then FV,f = t Id,
where

t =
#(G)〈f, χV 〉

dimV
.

Proof. First we claim that, for a class function f , FV,f is a G-morphism (for
every G-representation, not necessarily irreducible). We must show that

ρV (h) ◦ FV,f ◦ ρV (h)−1 = FV,f .

Using the definition of FV,f ,

ρV (h) ◦ FV,f ◦ ρV (h)−1 =
∑
g∈G

f(g)ρV (h) ◦ ρV (g) ◦ ρV (h)−1

=
∑
g∈G

f(g)ρV (hgh−1)

=
∑
g∈G

f(hgh−1)ρV (hgh−1)

=
∑
g∈G

f(g)ρV (g) = FV,f ,

where we have used the fact that f is a class function to conclude that
f(g) = f(hgh−1), and also the fact that, for a fixed h ∈ G, the elements
hgh−1 run through all elements of G.

Thus FV,f is a G-morphism. By Schur’s lemma, if V is irreducible, then
FV,f = t Id for some t ∈ C. Taking traces, we find that

TrFV,f = t(dimV ).

On the other hand, by definition,

TrFV,f =
∑
g∈G

f(g)χV (g) = #(G)〈f, χV 〉.

Equating these gives the formula for t.

Proposition 1.4. (i) If f is a class function and 〈f, χV 〉 = 0 for all irre-
ducible representations V , then f = 0.

(ii) If V1, . . . , Vh are the irreducible representations of G, in the sense that
V1, . . . , Vh are irreducible representations such that (1) For i 6= j, Vi is not
isomorphic to Vj and (2) Every irreducible G-representation is isomorphic
to Vi for some i, then the characters χV1 , . . . , χVh

are a unitary basis for Z,
the vector space of class functions.
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Proof. (i) If V is an irreducible representation of G, then V ∗ is irreducible
as well, by a HW problem. Thus, since χV ∗ = χV , the hypothesis of (i)
implies that 〈f, χV 〉 = 0 for every irreducible representation V of G. By
Proposition 1.3,

FV,f =
∑
g∈G

f(g)ρV (g) = 0.

Since every representation is a direct sum of irreducible representations, it
follows that

∑
g∈G f(g)ρV (g) = 0 for every representation V . In particular,

taking V = C[G], it follows that

FC[G],f =
∑
g∈G

f(g)ρC[G](g) = 0.

Let 1 = 1 · 1 be the identity element of the ring C[G] (the coefficient of
1 ∈ G is 1, and the coefficient of g 6= 1 is 0). Then FC[G],f (1) = 0. But
ρC[G](g)(1) = g · 1 = g, so∑

g∈G
f(g)ρC[G](g)(1) =

∑
g∈G

f(g) · g = 0.

It follows that f(g) = 0 for all g, i.e. f = 0.
(ii) Since 〈χVi , χVj 〉 = 0 if i 6= j and = 1 for i = j, the functions

χVi , . . . , χVh
are a linearly independent subset of Z. To see that they are

basis, it suffices to show that they span Z. Equivalently, it suffices to show
that {χVi , . . . , χVh

}⊥ = {0}. But this follows from (1).

Corollary 1.5. The number of irreducible representations of G up to iso-
morphism as above is equal to the number of conjugacy classes of G.

Proof. By (ii) of the above proposition, the number of irreducible represen-
tations of G up to isomorphism is equal to dimZ. On the other hand, dimZ
is equal to the number of conjugacy classes of G, and equating these two
expressions for dimZ gives the proof of the lemma.

Corollary 1.6. The group G is abelian ⇐⇒ every irreducible representa-
tion of G has dimension one.

Proof. We have seen that, if G is abelian, then every irreducible represen-
tation of G has dimension one. Conversely, suppose that every irreducible
representation of G has dimension one, and let h denote as usual the num-
ber of such up to isomorphism. Since

∑h
i=1 d

2
i = #(G), It follows that

h = #(G). Since h is also the number of conjugacy classes of G, this num-
ber is also #(G). Clearly, this is only possible if every conjugacy class has
exactly one element. But this implies that G is abelian.
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We also have the following orthogonality relations:

Proposition 1.7. With V1, . . . , Vh as above and χV1 , . . . , χVh
the corre-

sponding characters, then, for all x ∈ G,

h∑
i=1

|χVi(x)|2 =
#(G)

#(C(x))

whereas for all y ∈ G, if y /∈ C(x), then

h∑
i=1

χVi(x)χVi(y) = 0

Proof. Let C(x) be a conjugacy class in G and let fC(x) be the characteristic
function of C(x). Since χV1 , . . . , χVh

is a basis for the space of class functions,
there exist ti ∈ C such that

fC(x) =
h∑

i=1

tiχVi .

Taking inner products, and using the orthogonality relations, we find that

ti =

〈
h∑

j=1

tjχVj , χVi

〉
= 〈fC(x), χVi〉 =

1

#(G)

∑
g∈G

fC(x)(g)χVi(g).

But fC(x)(g) = 0 if g is not conjugate to x and = 1 if g is conjugate to x,

so the last sum above is a sum of χVi(g) for all g conjugate to x. For such
an x, χVi(g) = χVi(x) since χVi is a class function, and the total number of

possible g is #(C(x)). Thus ti =
#(C(x))

#(G)
χVi(x). Hence

fC(x) =

h∑
i=1

#(C(x))

#(G)
χVi(x)χVi .

Plugging in x, we see that

1 = fC(x)(x) =

h∑
i=1

#(C(x))

#(G)
χVi(x)χVi(x) =

#(C(x))

#(G)

h∑
i=1

|χVi(x)|2,
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which gives the first formula above. For the second, plug in a y /∈ C(x) to
get

0 = fC(x)(y) =
h∑

i=1

#(C(x))

#(G)
χVi(x)χVi(y),

and hence
∑h

i=1 χVi(x)χVi(y) = 0. Taking complex conjugates gives

h∑
i=1

χVi(x)χVi(y) = 0

as well.

2 Character tables

Given a group G, its character table is an h × h matrix (or table), where
we plot the conjugacy classes C(x1), . . . , C(xh) of G horizontally, typi-
cally starting with C(1) = {1}, and the distinct irreducible representations
V1, . . . , Vh of G (up to isomorphism) vertically, typically starting with the
trivial representation, and the corresponding entry in the table is the com-
mon value of χVi on any element of C(xj). For example, the character table
of S3 is given as follows:

1 (i, j) (i, j, k)

1 1 1 1

ε 1 −1 1

χW2 2 0 −1

Here, we have symbolically denoted the conjugacy class of all 2-cycles
by (i, j), and similarly for 3-cycles. As for the list of characters of irre-
ducible representations, the trivial representation C(1) has character the
trivial homomorphism, or constant function 1, and the other dimension one
representation C(ε) has character ε, where ε : S3 → {±1} is the sign homo-
morphism. The orthogonality relations imply that the columns of the table
are orthogonal, viewed as vectors in C3 under the Hermitian inner product,
and the sums of the absolute values squared as we go down a column are
equal to 6/#(C(x)), where C(x) is the corresponding conjugacy class, hence
(reading from left to right) 6, 2, 3 respectively.
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