The irreducible representations of G Ly(IF)
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Throughout, F = [F, denotes the field with ¢ elements, ¢ = p™ a prime

power. Let G = GLa(FF). To choose an element A = (Z Z) of G, we must

choose a nonzero first column v = (a, c) for A, so there are ¢> — 1 choices for
the first column. The second column can be any vector not a scalar multiple
of v, and hence there are ¢> — ¢ choices for the second column once we have
chosen the first. Thus,

#(G) = (¢* - 1)(¢* —q) = q(g + 1)(g — 1)*.

There are other groups associated to GLy(F). First, there is SLy(F),
which by definition is the kernel of det: GLy(F) — F*. Since det is surjective,
F* = GLy(F)/SLy(F), from which it follows that

#(F") = #(GL(F))/#(SLa(F)).

Thus

#(SLa(F)) = #(GL2(F)) /(¢ — 1) = q(g +1)(g — 1).
There is also PG Ls(FF), which is the quotient of GLo(F) by its center Z =
{al : a € F*} and PSLs(FF), which is the quotient of SLy(F) by its center

{x1}. If char F # 2, then #({£I}) = 2, but if charF = 2, then I = —I and
PSLy(F) = SLa(F). From this, we see that

#(PGL2(F)) = q(g+1)(¢—1)

Lag+1)(g—1), if g is odd;

#HPELa(F)) = {q(q+ Dg—1). ifg=2"

The representation theory of all of these groups is closely related, and for
simplicity we will just look at GLy(F). One reason for looking at PSLs(IF),



though, is the following theorem (which can be proved directly or using
representation theory):

Theorem: If ¢ > 3, then PSLy(F) is simple.
The orders of PSLy(F) for the first few values of ¢ are given by the
following table:

¢ _||2]3)4]5]7
#(PSLy(Fy)) || 6 [ 12 ] 60 | 60 | 168

As one might expect, PSLy(F2) = S3 and PSLy(F3) = Ay, neither of
which is simple. Moreover, PSLy(Fy) = PSLy(F5) = As, which is simple.
The group PSLy(F7) is a simple group which is not isomorphic to A,, for
any n. In general, the simple groups of the form PSLy(F,) are the first case
of simple groups of Lie type, a basic class of finite simple groups.

1 Certain subgroups of GG

The following are important subgroups associated to G:

r
0
split Cartan subgroup). It is isomorphic to the product F* x F*. Hence
#(D) = (g — 1)%. Note that D contains the center

1. The diagonal subgroup D = {( 2) RS F*} (also known as a

Z=Z(G)={al :a €F*}

of G
2. The Borel subgroup B = {(g 2) :ryu € F* s € F} More invari-
antly,
B={A € G: Ae; = ae; for some a € F*}.
The subgroup U = (1) i 15 € F} is a normal subgroup isomor-

phic to F. In fact, pp: B — F* x F* defined by

(5 )=t

is a surjective homomorphism from B to F* x F* and Keryp = U.
Hence the quotient B/U is isomorphic to F* x F*. Note that D is a



(non-normal) subgroup of B and in fact B is the semi-direct product
of U and D. Finally,

#(B) = q(q —1)* = #(U)#(D).

3. For simplicity we assume that charF # 2. We fix once and for all an
element o € F such that a ¢ (F)2. Then F(y/a) = F’ is the unique
degree q extension of F, and #(F') = ¢2. It is straightforward to check
that H = {(: 8;1) : 7,8 € F,not both 0} is a subgroup of G (also
known as a non-split Cartan subgroup). The group H is isomorphic
to the multiplicative group (F')*, via o : H — (F')*, where

(0 2)) oo

Thus #(H) = ¢*> — 1.

Geometrically, the Borel subgroup B arises as follows: Let P!(F) be the
projective line over F. By definition, P!(FF) is the set of lines in F2. Thus an
element of P!(IF) is an equivalence class [v], where v € F? — {(0,0)} and and
two nonzero elements v and v are equivalent if there exists a ¢t € F* such
that vy = tv1. Note that, if a # 0, then (a,b) is equivalent to (1,b/a), and
hence

PY(F) = {(1,t) : t € FY U {(0,1)}.

In particular, #(P!(F)) = ¢ + 1. Clearly G acts on PL(F) via A - [v] = [Av],
and the isotropy subgroup of [v] is the subgroup

{A € G: Av =tv for some t € F*}.

By definition, if v = e; = (1,0), then Ae; = te; for some t € F* <«
A € B. Also, an element A of G acts trivially on PL(F), i.e. Afv] = [v] for
all [v] € PL(F), <= A is a multiple of the identity, i.e. A € Z(G).

Since G acts transitively on P!(F) and the isotropy subgroup of [e;] is
B, there is a G-isomorphism of G-sets from G/B to P}(F). In particular,
#(G/B) = ¢+ 1, which we can also see directly from

_ 2
#(6/) = #(0)/#B) = W TUED gy,

Finally, we note that G acts doubly transitively on P!(F). In fact, if [v;]
and [vg] are two elements of PY(F) with [v1] # [vs], then the vectors vy and



vg are linearly independent, so there is a (unique) A € G such that Ae; = v;
and Aes = vy. It follows that G acts transitively on the set

{([v1], [v2]) € BY(F) : [o1] # [v2]},

and hence doubly transitively on P!(F). Note that, in this context, the
diagonal subgroup D is just the isotropy subgroup of the pair ([e1], [e2]).

2 Conjugacy classes in GLy(F)

In what follows, we divide the conjugacy classes of G into four possible
types. For each type, we describe the elements A of that type, the order
of the centralizer Zz(A), and hence the number of elements in the conju-
gacy class C(A) (since there is a bijection from G/Zg(A) to C(A), so that
#(G/Zg(A)) = #(C(A))). Finally, we list the number of conjugacy classes
of the given type.

Type I: A is in the center Z = Z(G) of G. In this case A = g 2 .
)

By definition, Zg(A) = G and hence #(Zg(A)) = #(G), #(G/Zg(A)) =
#(C(A)) = 1. Finally, there are ¢—1 elements in Z(G), since there are q
choices for a € F*.

Type II: A has two distinct eigenvalues, in other words the characteristic
polynomial p4(t) has two distinct roots in F. (Note that Type I corresponds
to the case where p4(t) has a repeated root in F and A is diagonalizable.) In

N 0> with a # d. It is straightforward

this case, up to conjugation, A = <0 d

r

to check that X = <t

2) commutes with A (i.e. XA = AX) <— X =

(6 u) 8 also a diagonal matrix; this follows either by direct computation

or by noting that X has to send the eigenvalue e; to a scalar multiple of e;,
i=1,2. Hence Zg(A) = D and #(Zg(A)) = (¢ — 1)?, so that
#(G/Zc(A)) = #(C(4) = alg+1)(a—1)*/(a=1)* = alg+1) = ¢* +q.

d
0
the possible eigenvalues (or eigenvectors); more directly,

GG -CIEDED-62)

Note that A is conjugate to A = ( , since we cannot a priori order



Thus the conjugacy class of A is specified by the unordered pair {a,d}, with
—1 —1)(g—2
a,d € F*, a # d. There are (q 5 > = w such unordered pairs,

2
—1)(g—2
hence w such conjugacy classes. The total number of elements
of Type II is
—1)(g—2 1
G002 (g1 1)) = Lot + Dla - Dl -2

Type III: The characteristic polynomial p4(t) has a repeated root in F
and A is not diagonalizable. If p4(t) = (t — a)?, then Ker A — aId is one-
dimensional and it is easy to see that we can choose a basis e, es such

that, in this basis, 4 = <g 31) A computation shows that X = <: z>

r

commutes with A (i.e. XA = AX) <— X = (O

and #(Z¢(A)) = q(q — 1), so that

#(G/Zc(A)) = #(C(4)) = q(a+1)(a—1)*/alg—1) = (¢—=1)(¢+1) = ¢* 1.

i) Hence Zg(A) C B

The conjugacy class of A is specified by the repeated root a € F* of pa(t),
hence there are ¢ — 1 such conjugacy classes. The total number of elements
of Type III is then

(q—1(g—D(qg+1)=(¢—1)*(q+1).

Type IV: There are no roots of the characteristic polynomial p4(t) in F.
Under the simplifying assumption that char F # 2, we choose « as in Section
1. Let v = a+by/a be a root of pa(t), with b # 0. To find an example of an
A such that « is a root of p4(t), one can look at the matrix representation
of multiplication of v on F(y/ar), which is a two-dimensional F-vector space,
using the basis 1, /. In general, one can check directly that A is conjugate
to the matrix A = <Z b(?), where b # 0. This also follows by counting the
total number of elements of G conjugate to a matrix of the form A above

and comparing this with the order of G.. Next, a calculation shows that
X = <T Z) commutes with A (i.e. XA = AX) < X = <Z "’f‘) The
condition that X € G = GLs(F), i.e. that det X # 0, is just the condition



that not both of 7 and s are 0. Hence Zg(A) = H and #(Zg(A)) = ¢*> — 1,
so that

#(G/Za(A) = #(C(A) = qlg+ 1) (g —1)*/¢" —1=q(¢—1) =¢* —¢.

The total number of conjugacy classes is the number of possible v = a+by/«

which are roots of p4(t). However, if v is a root of p4(t), then so is ¥ =

a—by/a. So the conjugacy classes are indexed by the conjugate pairs {v, 7},
a ba

where v € F' but v ¢ F. In fact, one can also see directly that A = b a

a
—b
conjugacy classes is then %(q2 — q), and the total number of elements of
Type IV is then

and A = < —20[) are conjugate, by <(1) _01> The total number of

%(cf —q)(¢* —q) = %q2(q —1)%

As a check on our calculations, if we add up the number of elements of
Types I, 11, III, IV, we get

(g—1)+ %Q(fﬁ“ D(g—1)(g—2)+(¢—1)%(qg+1) + %Cf(q —1)?
1

=5@=D[2+aa+D@-2)+2a- D@+ 1) +q*(g—1)]

1
=@+ -¢" - 20+ 2" -2+ ¢ - ¢’]

(¢ —1)(2¢° — 2¢) = (¢ — D)a(q+ 1)(q — 1) = #(G).

DN |

Finally, we tally the number h of conjugacy classes of G:

h=(q1)+(q_1)2(q_2)+(q1)+;(q2®
=(qg—1) 1+(q;2)+1+;q =(qg-1)(g+1)=¢"—1.

3 Construction of irreducible representations

We need to construct ¢?> — 1 pairwise non-isomorphic irreducible represen-
tations.

One dimensional representations: We have the determinant homomor-
phism det: G — F*. If f: F* — C* is a homomorphism, then fodet: G —



C* is a homomorphism, and hence corresponds to a one dimensional repre-
sentation Vy with character xy, = f odet. Since F is a finite field, F* is a
cyclic group of order ¢ — 1. Hence there are ¢ — 1 possible homomorphisms f
and g — 1 irreducible one dimensional representations obtained in this way.
In fact, every one dimensional representation is of this form. This will fol-
low from our list of representations, or can be checked by showing that the
commutator subgroup of G is SLy(F).

For completeness, we record the character table of such representations:

696 el (6 oo

fl@? | flaftd [ f@? [ f-ba)

A permutation representation and related representations: The
group G acts on P}(F), so we can form the associated permutation repre-
sentation C[P!(IF)]. Thus we can write

CP'(F) = CoW,

where C is the trivial subrepresentation of C[P!(FF)], with basis equal to the
vector Y cpip[v], and W is a complement. For example we could take W
to be the G-invariant subspace

W=1 > agll: > ay=0

[v]ePL(F) [v]ePL(F)

By what we have seen W is irreducible since the G-action is doubly tran-
sitive. We can also compute the character of W explicitly: let x be the
character of the representation C[P*(F)]. Then x(A) is the number of fixed
points of A. But a fixed point of A is the same as the line spanned by a
nonzero eigenvector of A. It follows that

1. x(A) =q+1if Ae Z(G).
A)=2if Ae D, A¢ Z(G).

(
2. x(
3. x(

(

)
A)=1if AecB, A¢D
4. x(A)=0if Ae H.

Since xyw = x — 1, we have the following table for the character xyw of W:



Typeof A | I |[II[TI| IV
aw(d) e 1]0]-1

As a check, one can work out directly that (xw, xw) = 1, so that W is
irreducible.

Note that, if ¢ = f o det is a homomorphism from G to C* as above,
then we can form the associated representation W ® e = Wy, with character
xw; = exw, and these are all distinct since, for example, taking A =

0 1
therefore € from the character. Thus, in all, there are ¢ — 1 irreducible
representations of dimension ¢ obtained in this way, with W = Wj. The
character tables are as follows:

t GG e ) G L) e

XW; (A f(a)? fla)f(d) ‘ 0 ‘ —f(a® — b*a)

<a 0) with @ # 1, xw,;(A) = f(a), and hence we can recover f and

Induced representations from the Borel subgroup: Recall that we
have a surjective homomorphism ¢p: B — F* x F*. Hence, given two
homomorphisms f;: F* — C* and fo: F* — C*, there is a homomorphism
(f1, f2): F* x F* — C* defined by

(f1, f2)(a, d) = fi(a) fa(d).

Composing with ¢p, we get a homomorphism (fi, f2) o ¢p and thus a cor-
responding one dimensional representation Ly, r, of B.
Let Uy, f, = Ind% Ly, f,. We claim:

Theorem: The representation Uy, f, is irreducible <= f; # f2. Moreover,
Up.f 2Up gy = fi=fland fo=fyor fi = f; and fo = f].

As we shall see, since there are ¢ — 1 homomorphisms f: F* — C*, this
gives 1(¢ — 1)(g — 2) new representations, all of dimension

#(G)/#(B)dim Ly, 5, = q + 1.

First, we deal with the case fi; = fo = f, say. In this case,

(f1, f2)(a, d) = fi(a) fa(d) = f(a)f(d) = f(ad)



and hence (f1, f2) o pp = f odet on B. In other words, Ly ; = Res§ V},
where V} is defined above. Thus

Us ;s = Ind§ Res§ V; = V; @ C[G/B] = V; ® C[P'(F)].
Since C[P!(F)] = C @ W, we see that
Upp=Vid Wy

Next, we see what Mackey’s theorem says about the irreducibility of
Uy, .f,- Infact, by Mackey’s theorem, Uy, ¢, is irreducible <= forall A ¢ B,
if we set B4 = ABA™! N B, then the two representations ResgA Ly, 1, and

ABA™' 1 A
Resp,”  Lf,

L?l s is the one-dimensional representation on ABA~! corresponding to the
character (f1, f2) o pp 0is-1. We shall use the following:

7, are disjoint (have no irreducible factors in common), where

Lemma: Let A € G.
1. ABA"'NnB=Bif AeB.

2. ABA~'N B is conjugate in B to D if Ae; is not a multiple of e;.

3. If A ¢ B, then A is in the double coset B <(1) (1)> B, in other words

A=A (? (1)> As for some Ay, As € B.

Proof: Clearly, if A € B then ABA™! = B and hence ABA='! N B = B.
Note that A € B <= Ae; is not a multiple of e;. In this case, let v = Ae;.
Then the two lines [e] and [v] are different points of P! (F), and by definition
ABA~'N B is the stabilizer of the ordered pair ([e], [v]). Then ABA™'N B
is conjugate to D by any element of B which takes e; to a multiple of e;
and [v] to [eg]. Finally, if X; € B is such that X v = ey, then X;Ae; = eq,

hence <(1) (1)) Xi1Ae; = ey. It follows that

0 1
A2—<1 O>X1A€B,

in other words that

1 (0 1 01
A:Xll(l O>A2:A1<1 0>A2,

9



where A; and Ay € B. O
Using the lemma, we check that the hypotheses of Mackey’s theorem

0 1\
1 0>—A . Then

Ba =D, and Resg . Lf1.1, just corresponds to the homomorphism D — C*

which maps (8 2) to fi(a)f2(d). On D, (f1, fa)oppois—1 = (f2, f1)opn

since ((1) é)l <8 2) <(1) é);(g 2)

01
10

are fulfilled. First we consider the case where A = <

More generally, if A = A < ) Ay, where A; and Ay € B, then

(fi,f2)oppoin = (fi,fa) oppoiysroioiyoiym

= (f1,f2) opnB Oi(? 1) oigr = (f2 fr)oppoiyr = (f2 f1) o,

where we have used the fact that pp oix = pp if X € B, since the image
of pp is abelian. We see then that the characters for the one dimensional
representations Res? L. and ReséfA_l LA1 ., are disjoint <= the
homomorphisms (f1, f2) and (fa, f1) are differenf <= f1# fo.

Let us compute the character of Uy, ,. Recall that

1
A) = —— X 1AX).
XIndg prfz( ) #(B) X_I;{GBXLJ‘Lh( )

We tabulate the possibilities:

Lemma:

a

1. IfAz(O

2) € Z(G), then X 1AX = A€ B for all X € G.

2. If A= (a O) with a # d, then X 'AX € B <= either X € B or

0 d
0 1
X€<1 0>B.
3.1 A= (g i),thenX‘lAXeB ~— XecB.

4. If the eigenvalues of A are not in F, i.e. A is of Type IV, then for all
X € G, X 'AX is not in B.

10



Proof: (1) is clear. For the remaining cases, note that X 'AX € B <+
X1AXe; = aey for some a € F*, <= A(Xe;) = aXe; for some a € F*,
<= Xe; is an eigenvector of A. If A € D, this says either that Xe;
is a multiple of e;, and hence that X € B, or that Xe; is a multiple of

eo. Since <(1) é) switches e; and eo, this says that <(1) é) X € B, hence

X e <O 1> B. This proves (2), and (3) is similar but simpler. Finally, in

10
case (4), the eigenvalues of X "' AX are the same as those for A and hence
do not lie in F. Thus X ' AX is never in B. O

This gives the following list for the values of XUy, g,

82 0 d)“ 0 a b a)
] B | e |60 ]G3

(¢ +1)f1(a) f2(a) | fila)fo(d) + fi(d)f2(a) | fi(a)fa(a) | 0

Since the values above are symmetric with respect to fi; and fo, we see
that xv,, ;, = Xvy,,, and hence that Uy, y, = Up, y,. Also, by considering

the values of XUy, j, O

0 .
a> and on , we see that the function

a a 0
0 0 1
Xuy, ;, determines the product fi(a)f2(a) and the sum fi(a) + f2(a), and
hence determines f1, fo up to permutation.

Note also that once we have a formula for the character XUy, 1,0 W€
could check directly that Uy, r, is irreducible for f; # f2 by showing that
<XUf1, 100 XUy, f2> = 1. Likewise, in case f1 = fo = f, we could verify directly
from the character tables that xu, , = xv; + xw;-

—1 1
1 5 = Q(q — 1)(¢ — 2) irreducible represen-

tations in this way, all of dimension ¢ + 1.

Thus, in all, we obtain

The remaining representations: These are harder to describe explicitly.
We begin by inducing a one dimensional representation of H to G. Let
0: (F')* — C* be a homomorphism, where as before F' = F(«). Then 6
corresponds to a one dimensional representation Ny of H, since H = (F')*.
Then Ind% Ny is a representation of GG, which however is not irreducible.
For brevity, we denote by xg the character xy 4c Ny

To deal with this problem, we consider the SLﬁDgroup ZU consisting of all
products of a scalar matrix al with an element of U, where Z is the center

11



of G; thus

ZU:{(“ ab):aeF*,beF}.
0 a

a ab
0

from F* x F to ZU. In particular, if f: F* — C* and ¢g: F — C* are
homomorphisms, then there is an induced one dimensional representation
of Z(G)U, which we denote by M 4, and hence a representation Inng My 4
of G, of dimension #(G) /#(ZU) = (¢—1)(g+1) = ¢*—1. We also denote by
X t,g the character XmndS,, M; - We are interested in the case where f = 0|F*
is the restriction of 6 to the subgroup F* of (F')*. Also, we let o: F' — F’

be “conjugation:”
o(a+bya) =a —by/a.

Since o is the nontrivial element of Gal(F'/F), o is the Frobenius homomor-
phism: o(8) = 7 for all g € F'.

Now suppose that g # 1. Then calculations for induced representations
give the following values for xgp+,4 and xs:

a O a O a 1 a ba
a G L6 a)e e ()] ()

It is easy to check that the map (a,b) — < defines an isomorphism

XoiF+,g || (¢* —1)0(a) 0 —0(a) 0

X0 (¢° — q)0(a) 0 0 0(pn(A)) +00a(pn(A))

where o : H — (F')* is the homomorphism sending <Z b§> to the ele-

ment a + by/a. (In particular, the character Xg|F+,g> and more generally the
character x4, do not depend on g, so that all of the induced representations
Inng My 4 are isomorphic, provided that g # 1.)

Now consider the class function 1y defined by

Yo = Xo|F+,g — X6-

It is clearly a combination of characters of irreducible representations with
integer coefficients, not necessarily positive: gy = Z?Zl n;Xi, where h =
¢®> — 1 is the number of conjugacy classes, n; € Z, and the y; are the
characters of the irreducible representations of G. By looking at the table

above, we see that the values of ¥y are given as follows:

12



a 0 a 0 a 1 a ba
L) TGt G o) ()
Yo || (¢ —1)8(a) | 0 | —0(a) | —0(pu(A) —0oa(pn(A))
A computation shows that (19, 1g) = 1, provided that 6 # 6 o 0. Thus,

in the expression vy = Z?:l niXi, since (g, vy) = Z?:l n?, there exists

exactly one i such that n; # 0, and in fact n; = £1. But since x;(1) = d; > 0
and ¥p(1) = g — 1 > 0, we see that 1y is the character of an irreducible
representation Oy.

For a character 0, if § is a generator of the cyclic group (F')*, then
9(3) = ¢ for some (¢? — 1) root of unity ¢, and hence §(c(3)) = 6(3) = (1.
Then § # oo <= (9 # (. Since (¢ = ( <= (isa (¢ — 1) root of
unity, there are (¢> — 1) — (¢ — 1) = ¢ — ¢ choices for ¢, and hence for 6.
Clearly vg = Ygos, and hence Oy = Ogo,. Moreover, Oy determines 1y and
hence the values 0(a), a € F* as well as 6(3) + 6(c(3)) for all 5 € (F')*,
for example for § a generator of the cyclic group (F')*. In particular, since
0(B0(c(B)) = 0(Ba(B)) = 6(a) for a = Bo(B) € F*. Thus the representation
Oy determines the unordered pair {#,f6oc}. So we see that the total number
of different representations obtained in this way is %(q2 —q).

Counting up all four types of representations, we see that we have found

(- 1)+ -1+ 5~ Da—2+ 50 = (- De+ T2+
=(@-Dg+)=¢-1

Thus we have found all of the irreducible representations.
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