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Throughout, F = Fq denotes the field with q elements, q = pn a prime

power. Let G = GL2(F). To choose an element A =
(
a b
c d

)
of G, we must

choose a nonzero first column v = (a, c) for A, so there are q2−1 choices for
the first column. The second column can be any vector not a scalar multiple
of v, and hence there are q2− q choices for the second column once we have
chosen the first. Thus,

#(G) = (q2 − 1)(q2 − q) = q(q + 1)(q − 1)2.

There are other groups associated to GL2(F). First, there is SL2(F),
which by definition is the kernel of det : GL2(F)→ F∗. Since det is surjective,
F∗ ∼= GL2(F)/SL2(F), from which it follows that

#(F∗) = #(GL2(F))/#(SL2(F)).

Thus
#(SL2(F)) = #(GL2(F))/(q − 1) = q(q + 1)(q − 1).

There is also PGL2(F), which is the quotient of GL2(F) by its center Z =
{aI : a ∈ F∗} and PSL2(F), which is the quotient of SL2(F) by its center
{±I}. If char F 6= 2, then #({±I}) = 2, but if char F = 2, then I = −I and
PSL2(F) = SL2(F). From this, we see that

#(PGL2(F)) = q(q + 1)(q − 1)

#(PSL2(F)) =

{
1
2q(q + 1)(q − 1), if q is odd;
q(q + 1)(q − 1), if q = 2n.

The representation theory of all of these groups is closely related, and for
simplicity we will just look at GL2(F). One reason for looking at PSL2(F),
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though, is the following theorem (which can be proved directly or using
representation theory):

Theorem: If q > 3, then PSL2(F) is simple.

The orders of PSL2(F) for the first few values of q are given by the
following table:

q 2 3 4 5 7
#(PSL2(Fq)) 6 12 60 60 168

As one might expect, PSL2(F2) ∼= S3 and PSL2(F3) ∼= A4, neither of
which is simple. Moreover, PSL2(F4) ∼= PSL2(F5) ∼= A5, which is simple.
The group PSL2(F7) is a simple group which is not isomorphic to An for
any n. In general, the simple groups of the form PSL2(Fq) are the first case
of simple groups of Lie type, a basic class of finite simple groups.

1 Certain subgroups of G

The following are important subgroups associated to G:

1. The diagonal subgroup D =
{(

r 0
0 s

)
: r, s ∈ F∗

}
(also known as a

split Cartan subgroup). It is isomorphic to the product F∗×F∗. Hence
#(D) = (q − 1)2. Note that D contains the center

Z = Z(G) = {aI : a ∈ F∗}

of G

2. The Borel subgroup B =
{(

r s
0 u

)
: r, u ∈ F∗, s ∈ F

}
. More invari-

antly,
B = {A ∈ G : Ae1 = ae1 for some a ∈ F∗}.

The subgroup U =
{(

1 s
0 1

)
: s ∈ F

}
is a normal subgroup isomor-

phic to F. In fact, ϕB : B → F∗ × F∗ defined by

ϕB

((
a b
0 d

))
= (a, d)

is a surjective homomorphism from B to F∗ × F∗ and KerϕB = U .
Hence the quotient B/U is isomorphic to F∗ × F∗. Note that D is a
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(non-normal) subgroup of B and in fact B is the semi-direct product
of U and D. Finally,

#(B) = q(q − 1)2 = #(U)#(D).

3. For simplicity we assume that char F 6= 2. We fix once and for all an
element α ∈ F such that α /∈ (F)2. Then F(

√
α) = F′ is the unique

degree q extension of F, and #(F′) = q2. It is straightforward to check

that H =
{(

r sα
s r

)
: r, s ∈ F,not both 0

}
is a subgroup of G (also

known as a non-split Cartan subgroup). The group H is isomorphic
to the multiplicative group (F′)∗, via ϕH : H → (F′)∗, where

ϕH

((
r sα
s r

))
= r + s

√
α.

Thus #(H) = q2 − 1.

Geometrically, the Borel subgroup B arises as follows: Let P1(F) be the
projective line over F. By definition, P1(F) is the set of lines in F2. Thus an
element of P1(F) is an equivalence class [v], where v ∈ F2−{(0, 0)} and and
two nonzero elements v1 and v2 are equivalent if there exists a t ∈ F∗ such
that v2 = tv1. Note that, if a 6= 0, then (a, b) is equivalent to (1, b/a), and
hence

P1(F) = {(1, t) : t ∈ F} ∪ {(0, 1)}.

In particular, #(P1(F)) = q + 1. Clearly G acts on P1(F) via A · [v] = [Av],
and the isotropy subgroup of [v] is the subgroup

{A ∈ G : Av = tv for some t ∈ F∗}.

By definition, if v = e1 = (1, 0), then Ae1 = te1 for some t ∈ F∗ ⇐⇒
A ∈ B. Also, an element A of G acts trivially on P1(F), i.e. A[v] = [v] for
all [v] ∈ P1(F), ⇐⇒ A is a multiple of the identity, i.e. A ∈ Z(G).

Since G acts transitively on P1(F) and the isotropy subgroup of [e1] is
B, there is a G-isomorphism of G-sets from G/B to P1(F). In particular,
#(G/B) = q + 1, which we can also see directly from

#(G/B) = #(G)/#(B) =
q(q − 1)2(q + 1)

q(q − 1)2
= q + 1.

Finally, we note that G acts doubly transitively on P1(F). In fact, if [v1]
and [v2] are two elements of P1(F) with [v1] 6= [v2], then the vectors v1 and
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v2 are linearly independent, so there is a (unique) A ∈ G such that Ae1 = v1
and Ae2 = v2. It follows that G acts transitively on the set

{([v1], [v2]) ∈ P1(F) : [v1] 6= [v2]},

and hence doubly transitively on P1(F). Note that, in this context, the
diagonal subgroup D is just the isotropy subgroup of the pair ([e1], [e2]).

2 Conjugacy classes in GL2(F)

In what follows, we divide the conjugacy classes of G into four possible
types. For each type, we describe the elements A of that type, the order
of the centralizer ZG(A), and hence the number of elements in the conju-
gacy class C(A) (since there is a bijection from G/ZG(A) to C(A), so that
#(G/ZG(A)) = #(C(A))). Finally, we list the number of conjugacy classes
of the given type.

Type I: A is in the center Z = Z(G) of G. In this case A =
(
a 0
0 a

)
.

By definition, ZG(A) = G and hence #(ZG(A)) = #(G), #(G/ZG(A)) =
#(C(A)) = 1. Finally, there are q−1 elements in Z(G), since there are q−1
choices for a ∈ F∗.

Type II: A has two distinct eigenvalues, in other words the characteristic
polynomial pA(t) has two distinct roots in F. (Note that Type I corresponds
to the case where pA(t) has a repeated root in F and A is diagonalizable.) In

this case, up to conjugation, A =
(
a 0
0 d

)
with a 6= d. It is straightforward

to check that X =
(
r s
t u

)
commutes with A (i.e. XA = AX) ⇐⇒ X =(

r 0
0 u

)
is also a diagonal matrix; this follows either by direct computation

or by noting that X has to send the eigenvalue ei to a scalar multiple of ei,
i = 1, 2. Hence ZG(A) = D and #(ZG(A)) = (q − 1)2, so that

#(G/ZG(A)) = #(C(A)) = q(q + 1)(q − 1)2/(q − 1)2 = q(q + 1) = q2 + q.

Note that A is conjugate to A =
(
d 0
0 a

)
, since we cannot a priori order

the possible eigenvalues (or eigenvectors); more directly,(
0 1
1 0

)(
a 0
0 d

)(
0 1
1 0

)−1

=
(

0 1
1 0

)(
a 0
0 d

)(
0 1
1 0

)
=
(
d 0
0 a

)
.
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Thus the conjugacy class of A is specified by the unordered pair {a, d}, with

a, d ∈ F∗, a 6= d. There are
(
q − 1

2

)
=

(q − 1)(q − 2)
2

such unordered pairs,

hence
(q − 1)(q − 2)

2
such conjugacy classes. The total number of elements

of Type II is

(q − 1)(q − 2)
2

· (q(q + 1)) =
1
2
q(q + 1)(q − 1)(q − 2).

Type III: The characteristic polynomial pA(t) has a repeated root in F
and A is not diagonalizable. If pA(t) = (t − a)2, then KerA − a Id is one-
dimensional and it is easy to see that we can choose a basis e1, e2 such

that, in this basis, A =
(
a 1
0 a

)
. A computation shows that X =

(
r s
t u

)
commutes with A (i.e. XA = AX) ⇐⇒ X =

(
r s
0 r

)
. Hence ZG(A) ⊆ B

and #(ZG(A)) = q(q − 1), so that

#(G/ZG(A)) = #(C(A)) = q(q+1)(q−1)2/q(q−1) = (q−1)(q+1) = q2−1.

The conjugacy class of A is specified by the repeated root a ∈ F∗ of pA(t),
hence there are q − 1 such conjugacy classes. The total number of elements
of Type III is then

(q − 1)(q − 1)(q + 1) = (q − 1)2(q + 1).

Type IV: There are no roots of the characteristic polynomial pA(t) in F.
Under the simplifying assumption that char F 6= 2, we choose α as in Section
1. Let γ = a+ b

√
α be a root of pA(t), with b 6= 0. To find an example of an

A such that γ is a root of pA(t), one can look at the matrix representation
of multiplication of γ on F(

√
α), which is a two-dimensional F-vector space,

using the basis 1,
√
α. In general, one can check directly that A is conjugate

to the matrix A =
(
a bα
b a

)
, where b 6= 0. This also follows by counting the

total number of elements of G conjugate to a matrix of the form A above
and comparing this with the order of G.. Next, a calculation shows that

X =
(
r s
t u

)
commutes with A (i.e. XA = AX) ⇐⇒ X =

(
r sα
s r

)
. The

condition that X ∈ G = GL2(F), i.e. that detX 6= 0, is just the condition
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that not both of r and s are 0. Hence ZG(A) = H and #(ZG(A)) = q2 − 1,
so that

#(G/ZG(A)) = #(C(A)) = q(q + 1)(q − 1)2/q2 − 1 = q(q − 1) = q2 − q.

The total number of conjugacy classes is the number of possible γ = a+b
√
α

which are roots of pA(t). However, if γ is a root of pA(t), then so is γ̄ =
a−b
√
α. So the conjugacy classes are indexed by the conjugate pairs {γ, γ̄},

where γ ∈ F′ but γ /∈ F. In fact, one can also see directly that A =
(
a bα
b a

)
and Ā =

(
a −bα
−b a

)
are conjugate, by

(
1 0
0 −1

)
. The total number of

conjugacy classes is then 1
2(q2 − q), and the total number of elements of

Type IV is then
1
2

(q2 − q)(q2 − q) =
1
2
q2(q − 1)2.

As a check on our calculations, if we add up the number of elements of
Types I, II, III, IV, we get

(q − 1) +
1
2
q(q + 1)(q − 1)(q − 2) + (q − 1)2(q + 1) +

1
2
q2(q − 1)2

=
1
2

(q − 1)
[
2 + q(q + 1)(q − 2) + 2(q − 1)(q + 1) + q2(q − 1)

]
=

1
2

(q − 1)
[
2 + q3 − q2 − 2q + 2q2 − 2 + q3 − q2

]
=

1
2

(q − 1)(2q3 − 2q) = (q − 1)q(q + 1)(q − 1) = #(G).

Finally, we tally the number h of conjugacy classes of G:

h = (q − 1) +
(q − 1)(q − 2)

2
+ (q − 1) +

1
2

(q2 − q)

= (q − 1)
[
1 +

(q − 2)
2

+ 1 +
1
2
q

]
= (q − 1)(q + 1) = q2 − 1.

3 Construction of irreducible representations

We need to construct q2 − 1 pairwise non-isomorphic irreducible represen-
tations.

One dimensional representations: We have the determinant homomor-
phism det : G→ F∗. If f : F∗ → C∗ is a homomorphism, then f ◦ det : G→
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C∗ is a homomorphism, and hence corresponds to a one dimensional repre-
sentation Vf with character χVf = f ◦ det. Since F is a finite field, F∗ is a
cyclic group of order q−1. Hence there are q−1 possible homomorphisms f
and q − 1 irreducible one dimensional representations obtained in this way.
In fact, every one dimensional representation is of this form. This will fol-
low from our list of representations, or can be checked by showing that the
commutator subgroup of G is SL2(F).

For completeness, we record the character table of such representations:

A

(
a 0
0 a

) (
a 0
0 d

)
, a 6= d A =

(
a 1
0 a

) (
a bα
b a

)
, b 6= 0

χVf (A) f(a)2 f(a)f(d) f(a)2 f(a2 − b2α)

A permutation representation and related representations: The
group G acts on P1(F), so we can form the associated permutation repre-
sentation C[P1(F)]. Thus we can write

C[P1(F)] ∼= C⊕W,

where C is the trivial subrepresentation of C[P1(F)], with basis equal to the
vector

∑
[v]∈P1(F)[v], and W is a complement. For example we could take W

to be the G-invariant subspace

W =

 ∑
[v]∈P1(F)

a[v][v] :
∑

[v]∈P1(F)

a[v] = 0

 .

By what we have seen W is irreducible since the G-action is doubly tran-
sitive. We can also compute the character of W explicitly: let χ be the
character of the representation C[P1(F)]. Then χ(A) is the number of fixed
points of A. But a fixed point of A is the same as the line spanned by a
nonzero eigenvector of A. It follows that

1. χ(A) = q + 1 if A ∈ Z(G).

2. χ(A) = 2 if A ∈ D, A /∈ Z(G).

3. χ(A) = 1 if A ∈ B, A /∈ D

4. χ(A) = 0 if A ∈ H.

Since χW = χ− 1, we have the following table for the character χW of W :
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Type of A I II III IV
χW (A) q 1 0 −1

As a check, one can work out directly that 〈χW , χW 〉 = 1, so that W is
irreducible.

Note that, if ε = f ◦ det is a homomorphism from G to C∗ as above,
then we can form the associated representation W ⊗ε = Wf , with character
χWf

= εχW , and these are all distinct since, for example, taking A =(
a 0
0 1

)
with a 6= 1, χWf

(A) = f(a), and hence we can recover f and

therefore ε from the character. Thus, in all, there are q − 1 irreducible
representations of dimension q obtained in this way, with W = W1. The
character tables are as follows:

A

(
a 0
0 a

) (
a 0
0 d

)
, a 6= d

(
a 1
0 a

) (
a bα
b a

)
, b 6= 0

χWf
(A) qf(a)2 f(a)f(d) 0 −f(a2 − b2α)

Induced representations from the Borel subgroup: Recall that we
have a surjective homomorphism ϕB : B → F∗ × F∗. Hence, given two
homomorphisms f1 : F∗ → C∗ and f2 : F∗ → C∗, there is a homomorphism
(f1, f2) : F∗ × F∗ → C∗ defined by

(f1, f2)(a, d) = f1(a)f2(d).

Composing with ϕB, we get a homomorphism (f1, f2) ◦ ϕB and thus a cor-
responding one dimensional representation Lf1,f2 of B.

Let Uf1,f2 = IndGB Lf1,f2 . We claim:

Theorem: The representation Uf1,f2 is irreducible ⇐⇒ f1 6= f2. Moreover,
Uf1,f2

∼= Uf ′1,f ′2 ⇐⇒ f1 = f ′1 and f2 = f ′2 or f1 = f ′2 and f2 = f ′1.

As we shall see, since there are q − 1 homomorphisms f : F∗ → C∗, this
gives 1

2(q − 1)(q − 2) new representations, all of dimension

#(G)/#(B) dimLf1,f2 = q + 1.

First, we deal with the case f1 = f2 = f , say. In this case,

(f1, f2)(a, d) = f1(a)f2(d) = f(a)f(d) = f(ad)

8



and hence (f1, f2) ◦ ϕB = f ◦ det on B. In other words, Lf,f = ResGB Vf ,
where Vf is defined above. Thus

Uf,f = IndGB ResGB Vf ∼= Vf ⊗ C[G/B] = Vf ⊗ C[P1(F)].

Since C[P1(F)] ∼= C⊕W , we see that

Uf,f ∼= Vf ⊕Wf .

Next, we see what Mackey’s theorem says about the irreducibility of
Uf1,f2 . In fact, by Mackey’s theorem, Uf1,f2 is irreducible ⇐⇒ for all A /∈ B,
if we set BA = ABA−1 ∩ B, then the two representations ResBBA Lf1,f2 and
ResABA

−1

BA
LAf1,f2 are disjoint (have no irreducible factors in common), where

LAf1,f2 is the one-dimensional representation on ABA−1 corresponding to the
character (f1, f2) ◦ ϕB ◦ iA−1 . We shall use the following:

Lemma: Let A ∈ G.

1. ABA−1 ∩B = B if A ∈ B.

2. ABA−1 ∩B is conjugate in B to D if Ae1 is not a multiple of e1.

3. If A /∈ B, then A is in the double coset B
(

0 1
1 0

)
B, in other words

A = A1

(
0 1
1 0

)
A2 for some A1, A2 ∈ B.

Proof : Clearly, if A ∈ B then ABA−1 = B and hence ABA−1 ∩ B = B.
Note that A ∈ B ⇐⇒ Ae1 is not a multiple of e1. In this case, let v = Ae1.
Then the two lines [e1] and [v] are different points of P1(F), and by definition
ABA−1∩B is the stabilizer of the ordered pair ([e1], [v]). Then ABA−1∩B
is conjugate to D by any element of B which takes e1 to a multiple of e1
and [v] to [e2]. Finally, if X1 ∈ B is such that X1v = e2, then X1Ae1 = e2,

hence
(

0 1
1 0

)
X1Ae1 = e1. It follows that

A2 =
(

0 1
1 0

)
X1A ∈ B,

in other words that

A = X−1
1

(
0 1
1 0

)
A2 = A1

(
0 1
1 0

)
A2,
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where A1 and A2 ∈ B. �

Using the lemma, we check that the hypotheses of Mackey’s theorem

are fulfilled. First we consider the case where A =
(

0 1
1 0

)
= A−1. Then

BA = D, and ResBBA Lf1,f2 just corresponds to the homomorphism D → C∗

which maps
(
a 0
0 d

)
to f1(a)f2(d). On D, (f1, f2)◦ϕB ◦ iA−1 = (f2, f1)◦ϕB

since (
0 1
1 0

)−1(
a 0
0 d

)(
0 1
1 0

)
=
(
d 0
0 a

)
.

More generally, if A = A1

(
0 1
1 0

)
A2, where A1 and A2 ∈ B, then

(f1, f2) ◦ ϕB ◦ iA−1 = (f1, f2) ◦ ϕB ◦ iA−1
2
◦ i( 0 1

1 0 ) ◦ iA−1
1

= (f1, f2) ◦ ϕB ◦ i( 0 1
1 0 ) ◦ iA−1

2
= (f2, f1) ◦ ϕB ◦ iA−1

1
= (f2, f1) ◦ ϕB,

where we have used the fact that ϕB ◦ iX = ϕB if X ∈ B, since the image
of ϕB is abelian. We see then that the characters for the one dimensional
representations ResBBA Lf1,f2 and ResABA

−1

BA
LAf1,f2 are disjoint ⇐⇒ the

homomorphisms (f1, f2) and (f2, f1) are different ⇐⇒ f1 6= f2.
Let us compute the character of Uf1,f2 . Recall that

χIndGB Lf1,f2
(A) =

1
#(B)

∑
X−1AX∈B

χLf1,f2 (X−1AX).

We tabulate the possibilities:

Lemma:

1. If A =
(
a 0
0 a

)
∈ Z(G), then X−1AX = A ∈ B for all X ∈ G.

2. If A =
(
a 0
0 d

)
with a 6= d, then X−1AX ∈ B ⇐⇒ either X ∈ B or

X ∈
(

0 1
1 0

)
B.

3. If A =
(
a 1
0 a

)
, then X−1AX ∈ B ⇐⇒ X ∈ B.

4. If the eigenvalues of A are not in F, i.e. A is of Type IV, then for all
X ∈ G, X−1AX is not in B.
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Proof : (1) is clear. For the remaining cases, note that X−1AX ∈ B ⇐⇒
X−1AXe1 = ae1 for some a ∈ F∗, ⇐⇒ A(Xe1) = aXe1 for some a ∈ F∗,
⇐⇒ Xe1 is an eigenvector of A. If A ∈ D, this says either that Xe1
is a multiple of e1, and hence that X ∈ B, or that Xe1 is a multiple of

e2. Since
(

0 1
1 0

)
switches e1 and e2, this says that

(
0 1
1 0

)
X ∈ B, hence

X ∈
(

0 1
1 0

)
B. This proves (2), and (3) is similar but simpler. Finally, in

case (4), the eigenvalues of X−1AX are the same as those for A and hence
do not lie in F. Thus X−1AX is never in B. �

This gives the following list for the values of χUf1,f2 :

A

(
a 0
0 a

) (
a 0
0 d

)
, a 6= d

(
a 1
0 a

) (
a bα
b a

)
, b 6= 0

χUf1,f2 (q + 1)f1(a)f2(a) f1(a)f2(d) + f1(d)f2(a) f1(a)f2(a) 0

Since the values above are symmetric with respect to f1 and f2, we see
that χUf1,f2 = χUf2,f1 and hence that Uf1,f2 ∼= Uf2,f1 . Also, by considering

the values of χUf1,f2 on
(
a 0
0 a

)
and on

(
a 0
0 1

)
, we see that the function

χUf1,f2 determines the product f1(a)f2(a) and the sum f1(a) + f2(a), and
hence determines f1, f2 up to permutation.

Note also that once we have a formula for the character χUf1,f2 , we
could check directly that Uf1,f2 is irreducible for f1 6= f2 by showing that
〈χUf1,f2 , χUf1,f2 〉 = 1. Likewise, in case f1 = f2 = f , we could verify directly
from the character tables that χUf,f = χVf + χWf

.

Thus, in all, we obtain
(
q − 1

2

)
=

1
2

(q − 1)(q − 2) irreducible represen-

tations in this way, all of dimension q + 1.

The remaining representations: These are harder to describe explicitly.
We begin by inducing a one dimensional representation of H to G. Let
θ : (F′)∗ → C∗ be a homomorphism, where as before F′ = F(α). Then θ
corresponds to a one dimensional representation Nθ of H, since H ∼= (F′)∗.
Then IndGH Nθ is a representation of G, which however is not irreducible.
For brevity, we denote by χθ the character χIndGH Nθ

.
To deal with this problem, we consider the subgroup ZU consisting of all

products of a scalar matrix aI with an element of U , where Z is the center
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of G; thus

ZU =
{(

a ab
0 a

)
: a ∈ F∗, b ∈ F

}
.

It is easy to check that the map (a, b) 7→
(
a ab
0 a

)
defines an isomorphism

from F∗ × F to ZU . In particular, if f : F∗ → C∗ and g : F → C∗ are
homomorphisms, then there is an induced one dimensional representation
of Z(G)U , which we denote by Mf,g, and hence a representation IndGZU Mf,g

of G, of dimension #(G)/#(ZU) = (q−1)(q+1) = q2−1. We also denote by
χf,g the character χIndGZU Mf,g

. We are interested in the case where f = θ|F∗

is the restriction of θ to the subgroup F∗ of (F′)∗. Also, we let σ : F′ → F′
be “conjugation:”

σ(a+ b
√
α) = a− b

√
α.

Since σ is the nontrivial element of Gal(F′/F), σ is the Frobenius homomor-
phism: σ(β) = βq for all β ∈ F′.

Now suppose that g 6= 1. Then calculations for induced representations
give the following values for χθ|F∗,g and χθ:

A

(
a 0
0 a

) (
a 0
0 d

)
, a 6= d

(
a 1
0 a

) (
a bα
b a

)
, b 6= 0

χθ|F∗,g (q2 − 1)θ(a) 0 −θ(a) 0
χθ (q2 − q)θ(a) 0 0 θ(ϕH(A)) + θ ◦ σ(ϕH(A))

where ϕH : H → (F′)∗ is the homomorphism sending
(
a bα
b a

)
to the ele-

ment a+ b
√
α. (In particular, the character χθ|F∗,g, and more generally the

character χf,g, do not depend on g, so that all of the induced representations
IndGZU Mf,g are isomorphic, provided that g 6= 1.)

Now consider the class function ψθ defined by

ψθ = χθ|F∗,g − χθ.

It is clearly a combination of characters of irreducible representations with
integer coefficients, not necessarily positive: ψθ =

∑h
i=1 niχi, where h =

q2 − 1 is the number of conjugacy classes, ni ∈ Z, and the χi are the
characters of the irreducible representations of G. By looking at the table
above, we see that the values of ψθ are given as follows:
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A

(
a 0
0 a

) (
a 0
0 d

)
, a 6= d

(
a 1
0 a

) (
a bα
b a

)
, b 6= 0

ψθ (q − 1)θ(a) 0 −θ(a) −θ(ϕH(A))− θ ◦ σ(ϕH(A))

A computation shows that 〈ψθ, ψθ〉 = 1, provided that θ 6= θ ◦ σ. Thus,
in the expression ψθ =

∑h
i=1 niχi, since 〈ψθ, ψθ〉 =

∑h
i=1 n

2
i , there exists

exactly one i such that ni 6= 0, and in fact ni = ±1. But since χi(1) = di > 0
and ψθ(1) = q − 1 > 0, we see that ψθ is the character of an irreducible
representation Oθ.

For a character θ, if β is a generator of the cyclic group (F′)∗, then
θ(β) = ζ for some (q2−1)st root of unity ζ, and hence θ(σ(β)) = θ(βq) = ζq.
Then θ 6= θ ◦ σ ⇐⇒ ζq 6= ζ. Since ζq = ζ ⇐⇒ ζ is a (q − 1)st root of
unity, there are (q2 − 1) − (q − 1) = q2 − q choices for ζ, and hence for θ.
Clearly ψθ = ψθ◦σ, and hence Oθ ∼= Oθ◦σ. Moreover, Oθ determines ψθ and
hence the values θ(a), a ∈ F∗ as well as θ(β) + θ(σ(β)) for all β ∈ (F′)∗,
for example for β a generator of the cyclic group (F′)∗. In particular, since
θ(βθ(σ(β)) = θ(βσ(β)) = θ(a) for a = βσ(β) ∈ F∗. Thus the representation
Oθ determines the unordered pair {θ, θ◦σ}. So we see that the total number
of different representations obtained in this way is 1

2(q2 − q).
Counting up all four types of representations, we see that we have found

(q − 1) + (q − 1) +
1
2

(q − 1)(q − 2) +
1
2

(q2 − q) = (q − 1)(2 +
q − 2

2
+
q

2
)

= (q − 1)(q + 1) = q2 − 1.

Thus we have found all of the irreducible representations.

13


