Some aspects of group theory

1 Some examples of finite groups

Our goal in this section will be to collect some standard examples of fi-
nite groups. The main emphasis will be on realizing them as subgroups of

GL(n,R) or GL(n,C).

Cyclic groups: For a natural number n, let Z/nZ be the standard cyclic
group of order n. We denote its elements by 0,1,...,n — 1, and 1 is a
generator. Another model for the cyclic group of order n is the n' roots of
unity, often denoted by u,:

fn={CeC: (" =1} = {2/ . k=0,...,n—1}.

Thus p, is a subgroup of the group C* under multiplication, in fact of
the group U(1) of complex numbers of absolute value 1, and the function
f:Z/nZ — p, defined by f(k) = e*™*/™ is an isomorphism.

Cyclic groups and dihedral groups as rotation groups: We first recall
the description of elements of O(2), the orthogonal group of 2 x 2 matrices

given in class and in Problem 1 of HW 3. Let Ay = C(.)SG —sinf and
sinf cosf

cosf sinf . .
let By = (sin 0 — cos 9> be 2 x 2 orthogonal matrices (depending on a
real number 6 mod 27), with det Ap = 1 and det By = —1. Finally, let
R =By = (1) _01> . We will use without comment various identities whose

proofs are part of Problem 1 of HW 3.

It is easy to see that Ay is a counterclockwise rotation of the plane by
the angle 6, and that Ay, - Ag, = Ag, y6,. In particular, Ay, has order n,
since AJ_ n = Asr = Ap = Id. Thus the cyclic subgroup of SO(2) generated
by A27r/m ie.

<A27r/n> = {A2k7r/n tn=0,...,n— 1}1



has order n and is isomorphic to Z/nZ. This realization of Z/nZ as a sub-
group of the rotation group is really the same as the realization of Z/nZ as
the subgroup p, of U(1). In fact, viewing C as R? with basis 1 correspond-
ing to e; and ¢ corresponding to es, multiplication by the complex number
a + bi defines an R-linear map R? — R?, whose corresponding matrix (with

respect to the basis 1,1) is (Z _ab). Since det <Z _ab> = a’+b* = |a+bil?,

<Z _ab> € SO(2) if and only if it is in O(2), if and only if a+bi has absolute

value 1. Applying the above to a + bi = e identifies pi, with (Agz/p)-
We turn now to D,,. For a natural number n > 3, let

Pr = (cos <M> ,sin <2kﬂ>> e R2
n n

It is easy to check that pp = (1,0), p1,...,Pn—1 are the vertices of a regular
n-gon P inscribed in the unit circle. They correspond to the elements of
tn, under the identification of R? with C. If T is a symmetry of the n-
gon P, then there exists a k such that T' = A/, or T = Bypr/p, in the
above notation. In fact, since Tpg = px for some k, we know that the first
column of T must be p, and then there are two possibilities for the second,
T = Aogrjn or T' = Boprn. Conversely, it T' = Agpr sy or T' = Bapr/y, then,
for all j, T'p; = p¢ for some ¢ and hence T is a symmetry of P. This can be
checked by first checking it for for T' = Ay, then for T = By = R, then
using By = AgR. This shows that D,, is isomorphic to the subgroup

2rki/n

{A2k7r/n7-82k7r/n k=0,...,n— 1}

of O(2). With p = Ay /, and 7 = By = R, the cyclic subgroup (p) is equal
to {Aogr/m 1 b =0,...,n — 1}, and we have the identity 7p7 = p~t=pr L
Thus p and 7 generate D,, i.e. that every element of D,, can be expressed
in terms of p and 7. In fact, every element of D,, can be uniquely written as
pF1?, where 0 < k < n — 1 and a is either 0 or 1. Using Problem 1 of HW
3, or similar methods, it is easy to work out the multiplication table for D,,
(all sums and differences of k1 and ks are taken mod n): pFiph2 = pkithke,
pr(phar) = phither (phir)(ph2) = ke, (phir)(pher) = phihe.

Note that we can view Ay, as the (complex) linear map C — C given
by multiplication by e2mk/n - The map R can also be viewed as a map
C — C, namely z + z. This map is R-linear if we view C as an R-vector

space of dimension two with basis 1,4, but of course it is not C-linear.



The quaternion group: If H is the ring of quaternions, then since H is a
division algebra its nonzero elements H* are a group under multiplication.
We can define the quaternion group @ as a subgroup of H*:

Q = {+1,+i, 7, +k}.

We can also find @ as a subgroup of GL2(C). Consider the following matrices
in M3(C) (the 2 x 2 matrices with complex coefficients):

i 0 0 —1 0 —i
=5 =0 == (G
A computation shows that:

H2:J2:K2:—<(1) ?):—Id; J=K;, JK=1I KI=1J.

Then, using 17! = —1I, and similarly for J, K, and use: (IJ)~! = J~I7 etc.,
it is easy to see that JI = —K, KJ = —I, IK = —].

Thus {£1d, £I, £J, £K} is a subset of GL2(C) (the invertible 2 x 2 matri-
ces with complex coefficients), and it is closed under matrix multiplication,
contains Id, and contains the inverse of every element, so it is a subgroup of
GLy(C), clearly isomorphic to @. (As usual, associativity is automatic.)

In fact, we can also realize @) as a subgroup of GL(4,R). However, we
shall not do so here.

The symmetric and alternating groups: We recall standard terminol-
ogy and facts about S,,. Recall that #(S,) = nl.

Definition 1.1. Let A = {ay,...,a;} be a subset of {1,...,n} with exactly
k elements (i.e. for i # j, a; # a;). Consider the following element o of S,.
For 1 <i < k-1, o(a;) = aj+1, o(ag) = a1, and o(j) = jif j ¢ A. We
call o a k-cycle and denote it by o = (a1, ...,a). Note that o depends on
the order of the a; and not just on the set A. We call ¢ a cycle if it is a
k-cycle for some k and refer to k as the length of o. A 1-cycle is always the
identity. A 2-cycle is called a transposition. For k > 2, with A and o as
above, the set A is called the support of o, and written Supp o. It is the set
of i € {1,...,n} such that o(i) # i.

There are the following useful facts about k-cycles:

(i) (a1,a2,...,a;) = (az,as,...,ag,a1) =+ = (ag,a1,...,a5_1).



(ii) The order of a k-cycle o = (ay,as,...,ax) is k, and o'(a;) = a;4+;, if
i+3j < k,and o'(aj) = ajyj—k, if i +35 > k. (But, if o is a k-cycle,
then 0" need not always be a k-cycle.) In particular, o%(a1) = a;.1 if
1<i<k-1,and o¥(ay) = a;.

(iii) (al,ag, - ,ak)_l = (ak,ak_l, e ,al).

(iv) Let o be a k-cycle and 7 an ¢-cycle. We call o and 7 disjoint if their
supports are disjoint subsets of {1,...,n}, i.e. if Supp o N Supp 7 = 0.
If o0 and 7 are disjoint, then they commute, i.e. o7 = 70.

(v) Given a k-cycle (aq,as,...,a;) and an arbitrary element p € S,,,

-1

p-(at,az,...,ax) - p~ = (plar), plaz), ..., plak))-

For a general o € S,,, we haves:

Theorem 1.2. Let o € S,. Then o is a product of disjoint cycles of lengths
> 2. The expression of o as such a product is unique up to order. O

Let (a1,aq,...,ax) be a k-cycle. By direct computation, (a1, as, ..., ax)
is a product of k£ — 1 transpositions:

(a17 az, ..., a’k) = (ala ak)(a17 ak—l) e (a’17 a3)(a17 CLQ).
Corollary 1.3. Ewvery element of Sy, is a product of transpositions. O

Theorem 1.4. Letc € S,. If o =1 -7, = p1---pe, where the 7; and
p; are all transpositions, then k = £ mod 2. In other words, o cannot be
written both as a product of an even number of transpositions and a product
of an odd number of transpositions. ]

Definition 1.5. A permutation o € S,, is even if ¢ is a product of an even
number of transpositions and odd if ¢ is a product of an odd number of
transpositions. The sign of a permutation o € Sy, €(o) or sgno, is +1 if
o is even and —1 if o is odd. For 01,09 € Sy, €(0102) = £(01)e(02). Thus
¢ is a homomorphism from S, to the multiplicative group {£1}, and it is
clearly surjective if n > 2. If o is a k-cycle, then e(0) = (—1)¥71, ie. o is
odd if k is even and even if k is odd.

Theorem 1.4 can be rephrased by saying that the function e is well
defined. The function € can be defined directly as follows:



Let A(o) € GL,(R) be the matrix corresponding to the linear map, also
denoted A(c), which satisfies: for all i, A(c)(e;) = e,;). Then e(o) =
det A(o).

We define A,,, the alternating group, as the kernel of ¢, i.e.

A, ={o €5, :0is a product of an even number of transpositions}.

Thus A, is a subgroup of S,. If n > 2, then #(A,) = #(Sn)/2 = nl/2.
(A1 = 51.)

2 Group actions

Definition 2.1. An action of the group G on the set X is a function F': G x
X — X, whose value at (g, ) is denoted g - z, such that

1. Forall ghe Gandz € X, g- (h-x) = (gh) - z.
2. Forallz e X, 1-x ==x.

We say X is a G-set. Of course, a set X may have many different interesting
actions of G.
Given g € G, define the function L,: X — X by:

Ly(z)=g-x.
Then L; = Idx, Ly ol = Ly, and hence
LyoLy1r=Lg10Ly=1Ly=Idx.

Thus L, is a bijection (is an element of Sy, the group of permutations of
X), with inverse Lg_1 = Lg-1, and the function g — L, is a homomorphism
from G to Sx. Thus every G-set defines a homomorphism from G to Sx.
Conversely, if F': G — Sx is a homomorphism, then F' defines an action of
G on X by:

g-x = Fg)(x).

Example 2.2. The group G acts on itself via: g-z = gz. Here, the equality
g-(h-x) = (gh)-x follows from the associativity of the group operation. The
homomorphism G — Sg appears in the proof of Cayley’s Theorem. More
generally, if H is a subgroup of G, then G acts on the set of left cosets G/H
via the action ¢ - (zH) = (gx)H.



Definition 2.3. Given an action of G on X, the orbit G - x of an element
x € X is the set

{9-z:9€G}.
It is a subset of X. The isotropy subgroup

G,={9€G:g-z=uzx}.

It is a subgroup of G. For all z € X, x € G - x, and two orbits G - x and
G - y are either disjoint or equal. The action is transitive if there exists an
x € X (equivalently, for all x € X) such that G-z = X. The orbit G - x is
also a G-set, and G -z 2 G/G, as G-sets. We define the fixed set X by:

XC={reX:g-z=zxforalgecG}.
It is a G-subset of X.

Example 2.4. (1) For G acting on G by left multiplication, the action is
transitive and the isotropy subgroup G, of any element is {1}.

(2) For G acting on the left cosets G/H by the action g- (zH) = (gz)H, the
action is transitive. The isotropy subgroup of H is H, and then it is easy to
check that the isotropy subgroup of zH is xHx~!. More generally, if G’ acts

onaset X,z € X,and y € G-z, say y = gx, then the isotropy subgroups

of y and x are related as follows: G, = 9GLg~ L.

(3) G acts on G by conjugation: ij(g) = hgh~'. The orbit of an element
g € G is the conjugacy class C'(g) containing g:

C(g) = {hgh™':h e G}.
The isotropy subgroup of g is the centralizer Zg(g) of g:
Za(g9) = {h € G : hgh™" = g}.
The fixed set is the center Z(G) of G:
Z(G)={g€G:hgh ' =g forall hc G}.

Since hgh~™! = g <= hg = gh, the centralizer of g is the subgroup of all
elements of G which commute with g and the center of GG is the subgroup
of all elements of G which commute with every element.



