
Some aspects of group theory

1 Some examples of finite groups

Our goal in this section will be to collect some standard examples of fi-
nite groups. The main emphasis will be on realizing them as subgroups of
GL(n,R) or GL(n,C).

Cyclic groups: For a natural number n, let Z/nZ be the standard cyclic
group of order n. We denote its elements by 0, 1, . . . , n − 1, and 1 is a
generator. Another model for the cyclic group of order n is the nth roots of
unity, often denoted by µn:

µn = {ζ ∈ C : ζn = 1} = {e2πik/n : k = 0, . . . , n− 1}.

Thus µn is a subgroup of the group C∗ under multiplication, in fact of
the group U(1) of complex numbers of absolute value 1, and the function
f : Z/nZ→ µn defined by f(k) = e2πik/n is an isomorphism.

Cyclic groups and dihedral groups as rotation groups: We first recall
the description of elements of O(2), the orthogonal group of 2× 2 matrices

given in class and in Problem 1 of HW 3. Let Aθ =

(
cos θ − sin θ
sin θ cos θ

)
and

let Bθ =

(
cos θ sin θ
sin θ − cos θ

)
be 2 × 2 orthogonal matrices (depending on a

real number θ mod 2π), with detAθ = 1 and detBθ = −1. Finally, let

R = B0 =

(
1 0
0 −1

)
. We will use without comment various identities whose

proofs are part of Problem 1 of HW 3.
It is easy to see that Aθ is a counterclockwise rotation of the plane by

the angle θ, and that Aθ1 · Aθ2 = Aθ1+θ2 . In particular, A2π/n has order n,
since An2π/n = A2π = A0 = Id. Thus the cyclic subgroup of SO(2) generated
by A2π/n, i.e.

〈A2π/n〉 = {A2kπ/n : n = 0, . . . , n− 1},
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has order n and is isomorphic to Z/nZ. This realization of Z/nZ as a sub-
group of the rotation group is really the same as the realization of Z/nZ as
the subgroup µn of U(1). In fact, viewing C as R2 with basis 1 correspond-
ing to e1 and i corresponding to e2, multiplication by the complex number
a+ bi defines an R-linear map R2 → R2, whose corresponding matrix (with

respect to the basis 1, i) is

(
a −b
b a

)
. Since det

(
a −b
b a

)
= a2+b2 = |a+bi|2,(

a −b
b a

)
∈ SO(2) if and only if it is in O(2), if and only if a+bi has absolute

value 1. Applying the above to a+ bi = e2πki/n identifies µn with 〈A2π/n〉.
We turn now to Dn. For a natural number n ≥ 3, let

pk =

(
cos

(
2kπ

n

)
, sin

(
2kπ

n

))
∈ R2.

It is easy to check that p0 = (1, 0),p1, . . . ,pn−1 are the vertices of a regular
n-gon P inscribed in the unit circle. They correspond to the elements of
µn under the identification of R2 with C. If T is a symmetry of the n-
gon P , then there exists a k such that T = A2kπ/n or T = B2kπ/n in the
above notation. In fact, since Tp0 = pk for some k, we know that the first
column of T must be pk, and then there are two possibilities for the second,
T = A2kπ/n or T = B2kπ/n. Conversely, if T = A2kπ/n or T = B2kπ/n, then,
for all j, Tpj = p` for some ` and hence T is a symmetry of P . This can be
checked by first checking it for for T = A2kπ/n, then for T = B0 = R, then
using Bθ = AθR. This shows that Dn is isomorphic to the subgroup

{A2kπ/n, B2kπ/n : k = 0, . . . , n− 1}

of O(2). With ρ = A2π/n and τ = B0 = R, the cyclic subgroup 〈ρ〉 is equal
to {A2kπ/n : k = 0, . . . , n− 1}, and we have the identity τρτ = ρ−1 = ρn−1.
Thus ρ and τ generate Dn, i.e. that every element of Dn can be expressed
in terms of ρ and τ . In fact, every element of Dn can be uniquely written as
ρkτa, where 0 ≤ k ≤ n − 1 and a is either 0 or 1. Using Problem 1 of HW
3, or similar methods, it is easy to work out the multiplication table for Dn

(all sums and differences of k1 and k2 are taken mod n): ρk1ρk2 = ρk1+k2 ,
ρk1(ρk2τ) = ρk1+k2τ , (ρk1τ)(ρk2) = ρk1−k2τ , (ρk1τ)(ρk2τ) = ρk1−k2 .

Note that we can view A2kπ/n as the (complex) linear map C→ C given

by multiplication by e2πik/n. The map R can also be viewed as a map
C → C, namely z 7→ z̄. This map is R-linear if we view C as an R-vector
space of dimension two with basis 1, i, but of course it is not C-linear.
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The quaternion group: If H is the ring of quaternions, then since H is a
division algebra its nonzero elements H∗ are a group under multiplication.
We can define the quaternion group Q as a subgroup of H∗:

Q = {±1,±i,±j,±k}.

We can also findQ as a subgroup ofGL2(C). Consider the following matrices
in M2(C) (the 2× 2 matrices with complex coefficients):

I =

(
i 0
0 −i

)
; J =

(
0 −1
1 0

)
; K =

(
0 −i
−i 0

)
.

A computation shows that:

I2 = J2 = K2 = −
(

1 0
0 1

)
= − Id; IJ = K; JK = I; KI = J.

Then, using I−1 = −I, and similarly for J, K, and use: (IJ)−1 = J−1I−1 etc.,
it is easy to see that JI = −K, KJ = −I, IK = −J.

Thus {± Id,±I,±J,±K} is a subset of GL2(C) (the invertible 2×2 matri-
ces with complex coefficients), and it is closed under matrix multiplication,
contains Id, and contains the inverse of every element, so it is a subgroup of
GL2(C), clearly isomorphic to Q. (As usual, associativity is automatic.)

In fact, we can also realize Q as a subgroup of GL(4,R). However, we
shall not do so here.

The symmetric and alternating groups: We recall standard terminol-
ogy and facts about Sn. Recall that #(Sn) = n!.

Definition 1.1. Let A = {a1, . . . , ak} be a subset of {1, . . . , n} with exactly
k elements (i.e. for i 6= j, ai 6= aj). Consider the following element σ of Sn.
For 1 ≤ i ≤ k − 1, σ(ai) = ai+1, σ(ak) = a1, and σ(j) = j if j /∈ A. We
call σ a k-cycle and denote it by σ = (a1, . . . , ak). Note that σ depends on
the order of the ai and not just on the set A. We call σ a cycle if it is a
k-cycle for some k and refer to k as the length of σ. A 1-cycle is always the
identity. A 2-cycle is called a transposition. For k ≥ 2, with A and σ as
above, the set A is called the support of σ, and written Suppσ. It is the set
of i ∈ {1, . . . , n} such that σ(i) 6= i.

There are the following useful facts about k-cycles:

(i) (a1, a2, . . . , ak) = (a2, a3, . . . , ak, a1) = · · · = (ak, a1, . . . , ak−1).
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(ii) The order of a k-cycle σ = (a1, a2, . . . , ak) is k, and σi(aj) = ai+j , if
i + j ≤ k, and σi(aj) = ai+j−k, if i + j > k. (But, if σ is a k-cycle,
then σr need not always be a k-cycle.) In particular, σi(a1) = ai+1 if
1 ≤ i ≤ k − 1, and σk(a1) = a1.

(iii) (a1, a2, . . . , ak)
−1 = (ak, ak−1, . . . , a1).

(iv) Let σ be a k-cycle and τ an `-cycle. We call σ and τ disjoint if their
supports are disjoint subsets of {1, . . . , n}, i.e. if Suppσ ∩ Supp τ = ∅.
If σ and τ are disjoint, then they commute, i.e. στ = τσ.

(v) Given a k-cycle (a1, a2, . . . , ak) and an arbitrary element ρ ∈ Sn,

ρ · (a1, a2, . . . , ak) · ρ−1 = (ρ(a1), ρ(a2), . . . , ρ(ak)).

For a general σ ∈ Sn, we haves:

Theorem 1.2. Let σ ∈ Sn. Then σ is a product of disjoint cycles of lengths
≥ 2. The expression of σ as such a product is unique up to order.

Let (a1, a2, . . . , ak) be a k-cycle. By direct computation, (a1, a2, . . . , ak)
is a product of k − 1 transpositions:

(a1, a2, . . . , ak) = (a1, ak)(a1, ak−1) · · · (a1, a3)(a1, a2).

Corollary 1.3. Every element of Sn is a product of transpositions.

Theorem 1.4. Let σ ∈ Sn. If σ = τ1 · · · τk = ρ1 · · · ρ`, where the τi and
ρj are all transpositions, then k ≡ ` mod 2. In other words, σ cannot be
written both as a product of an even number of transpositions and a product
of an odd number of transpositions.

Definition 1.5. A permutation σ ∈ Sn is even if σ is a product of an even
number of transpositions and odd if σ is a product of an odd number of
transpositions. The sign of a permutation σ ∈ Sn, ε(σ) or sgnσ, is +1 if
σ is even and −1 if σ is odd. For σ1, σ2 ∈ Sn, ε(σ1σ2) = ε(σ1)ε(σ2). Thus
ε is a homomorphism from Sn to the multiplicative group {±1}, and it is
clearly surjective if n ≥ 2. If σ is a k-cycle, then ε(σ) = (−1)k−1, i.e. σ is
odd if k is even and even if k is odd.

Theorem 1.4 can be rephrased by saying that the function ε is well
defined. The function ε can be defined directly as follows:
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Let A(σ) ∈ GLn(R) be the matrix corresponding to the linear map, also
denoted A(σ), which satisfies: for all i, A(σ)(ei) = eσ(i). Then ε(σ) =
detA(σ).

We define An, the alternating group, as the kernel of ε, i.e.

An = {σ ∈ Sn : σ is a product of an even number of transpositions}.

Thus An is a subgroup of Sn. If n ≥ 2, then #(An) = #(Sn)/2 = n!/2.
(A1 = S1.)

2 Group actions

Definition 2.1. An action of the group G on the set X is a function F : G×
X → X, whose value at (g, x) is denoted g · x, such that

1. For all g, h ∈ G and x ∈ X, g · (h · x) = (gh) · x.

2. For all x ∈ X, 1 · x = x.

We say X is a G-set. Of course, a set X may have many different interesting
actions of G.

Given g ∈ G, define the function Lg : X → X by:

Lg(x) = g · x.

Then L1 = IdX , Lg ◦ lh = Lgh, and hence

Lg ◦ Lg−1 = Lg−1 ◦ Lg = L1 = IdX .

Thus Lg is a bijection (is an element of SX , the group of permutations of
X), with inverse L−1

g = Lg−1 , and the function g 7→ Lg is a homomorphism
from G to SX . Thus every G-set defines a homomorphism from G to SX .
Conversely, if F : G→ SX is a homomorphism, then F defines an action of
G on X by:

g · x = F (g)(x).

Example 2.2. The group G acts on itself via: g ·x = gx. Here, the equality
g ·(h ·x) = (gh) ·x follows from the associativity of the group operation. The
homomorphism G → SG appears in the proof of Cayley’s Theorem. More
generally, if H is a subgroup of G, then G acts on the set of left cosets G/H
via the action g · (xH) = (gx)H.
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Definition 2.3. Given an action of G on X, the orbit G · x of an element
x ∈ X is the set

{g · x : g ∈ G}.

It is a subset of X. The isotropy subgroup

Gx = {g ∈ G : g · x = x}.

It is a subgroup of G. For all x ∈ X, x ∈ G · x, and two orbits G · x and
G · y are either disjoint or equal. The action is transitive if there exists an
x ∈ X (equivalently, for all x ∈ X) such that G · x = X. The orbit G · x is
also a G-set, and G · x ∼= G/Gx as G-sets. We define the fixed set XG by:

XG = {x ∈ X : g · x = x for all g ∈ G}.

It is a G-subset of X.

Example 2.4. (1) For G acting on G by left multiplication, the action is
transitive and the isotropy subgroup Gg of any element is {1}.
(2) For G acting on the left cosets G/H by the action g · (xH) = (gx)H, the
action is transitive. The isotropy subgroup of H is H, and then it is easy to
check that the isotropy subgroup of xH is xHx−1. More generally, if G acts
on a set X, x ∈ X, and y ∈ G · x, say y = gx, then the isotropy subgroups
of y and x are related as follows: Gy = gGxg

−1.

(3) G acts on G by conjugation: ih(g) = hgh−1. The orbit of an element
g ∈ G is the conjugacy class C(g) containing g:

C(g) = {hgh−1 : h ∈ G}.

The isotropy subgroup of g is the centralizer ZG(g) of g:

ZG(g) = {h ∈ G : hgh−1 = g}.

The fixed set is the center Z(G) of G:

Z(G) = {g ∈ G : hgh−1 = g for all h ∈ G}.

Since hgh−1 = g ⇐⇒ hg = gh, the centralizer of g is the subgroup of all
elements of G which commute with g and the center of G is the subgroup
of all elements of G which commute with every element.
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