Representations

1 Basic definitions

If V is a k-vector space, we denote by AutV the group of k-linear iso-
morphisms F': V — V and by End V' the k-vector space of k-linear maps
F:V — V. Thus, if V. = k", then AutV = GL(n, k) and EndV = M,, (k).
In general, if V is a finite dimensional vector space of dimension n, then a
choice of basis defines a group isomorphism Aut V' = GL(n, k) and a vector
space End V = M, (k).

From now on, unless otherwise stated, £t = C, i.e all vector
spaces are C-vector spaces, all linear maps are C-linear, and all
vector subspaces are closed under scalar multiplication by C.

Definition 1.1. Let G be a group. A representation of G on V is a
homomorphism p: G — AutV, where V is a finite dimensional C-vector
space. Equivalently, for all g € G, p(g): V — V is a linear map satisfying:
p(g)(p(h)(v)) = p(gh)(v) and p(1) = Id, i.e. a representation is equivalent
to an action of G on V by linear maps. The degree degp is by definition
dim V. Finally, a choice of basis of V identifies p with a homomorphism
(also denoted p) from G to GL(n,C). Changing the basis replaces p by
TpT~!, where T is an invertible matrix.

We will usually abbreviate the data of the representation p: G — Aut V'
by p, or frequently by V, with the understanding that the vector space V
includes the data of the homomorphism p or of the G-action. Given V, we
often denote the corresponding homomorphism by py, especially if there are
several different G-representations under discussion.

Remark 1.2. For a general field k and a finite dimensional k-vector space V'
(and we are especially interested in the case k = R or kK = Q), we can speak
of a k-representation, i.e. a homomorphism G — Aut V. After choosing a
k-basis, this amounts to a homomorphism G — GL(n,k). Note that, if &
is a subfield of a larger field K, there is an obvious inclusion GL(n,k) C



GL(n, K) which realizes GL(n, k) as a subgroup of GL(n, K). For example,
the group of n x m invertible matrices with real (or rational) coefficients
is a subgroup of GL(n,C). To say that V is a real representation, or a
rational representation of G, is to say that we can find a representation and
an appropriate basis so that all of the corresponding matrices have real or
rational entries. As we will see, this is not always possible.

Conversely, the field C is also a vector space over R of dimension 2,
with basis 1,7. Similarly, C™ is a real vector space of dimension 2n, with
R-basis eq,ieq, €2, i€9, ..., €y, ie,. Moreover, a C-linear map F: C" — C" is
clearly R-linear as well, giving an inclusion homomorphism ¢: GL(n,C) —
GL(2n,R). For example, in case n = 1, GL(1,C) = C*, and the above
homomorphism is given by

. a —b
t(a+bi) = (b a ) :
For a general finite extension K of a field & (in case you have taken Modern
Algebra IT), we can view K as a k-vector space whose dimension over k is
by definition the field degree [K : k]. Then K™ can be viewed as a k-vector
space of dimension [K : k|n.

Example 1.3. (0) For V' = {0} the vector space of dimension zero, Aut V =
{Id} and there is a unique G-representation on V. However, this represen-
tation is uninteresting and we will systematically exclude it most of the
time.

(1) dimV =1, p(g) =1d for all g € G. We call V the trivial representation.
More generally, we can take dim V arbitrary but still set p(g) = Id for all
g € G (i.e. p: G— AutV is the trivial homomorphism). Unlike the case of
the zero representation above, the trivial representation plays an important
role.

(2) If dimV =1, Aut V = C* acting by multiplication, and a representation
p is the same as a homomorphism G — C*.

(3) If G is finite, then the regular representation pyeg is defined as follows:
V' = C[G], the free vector space with basis G, and the homomorphism preg
is defined by:

Preg(h) Ztg 9 = Ztg - (hg) = Zth—lg "9
geG geG geG

Viewing C[G| as the space of functions f: G — C, the G-action is given by
p(g)(f) = fo L,



where L,: G — G is left multiplication by g. Notice that we take L;l not
L, which is necessary to keep the order right, and that this is already built
into the above formula for preg.

(4) More generally, if X is a finite G-set, then C[X] is a G-representation

p(h) <thm> :th-(hwv):Zthflx-x.

zeX reX

Again, we can view C[X] as the vector space of functions f: X — C, and
the action on functions is given by p(g)(f) = fo L;', where Ly: X — X is
the function defined by Ly(z) =g - .

For example, C" is a representation of the symmetric group S, (the
standard representation) via: if o € Sy, then p(0)(e;) = e, (;), and hence

,0((7) (Z ti€i> = Ztiea(i) = Ztgfl(i)ei.
i=1 i=1 i=1

(5) If G = Z, then a homomorphism p: G — GL(n,C) is uniquely deter-
mined by p(1) = A, since then p(n) = A" for all n € Z.

(6) If p is a G-representation and H is a subgroup of GG, then we can restrict
the function p to H to obtain a homomorphism p|H: H — AutV. We
denote this representation of H by Resg p. More generally, if f: G’ — G is
a homomorphism, then po f: G’ — AutV is a G’-representation.

2 Invariant subspaces and morphisms

Definition 2.1. A vector subspace of a G-representation V is a G-invariant
subspace if, for all g € G, p(g)(W) =W <<= forall g € G, p(g)(W) C W
(since then we also have p(g~1)(W) = (p(g) ") (W) C W, hence W C
p(g)(W)). In this case, W is also a G-representation via the action of G on
V: For w € W, we set pw(w) = py(w).

In the definition, we allow for the possibility that W = {0}, see (1)
below.

Example 2.2. (1) {0} and V are always G-invariant subspaces.

(2) For the standard representation C" of S,,, W1 = {(¢t,...,t) : t € C} and
Wo = {(t1,...,tn) : Y_i— t; = 0} are Sp-invariant.

(3) If W is a one dimensional G-invariant subspace of V', then W = C - v
where v is a (nonzero) common eigenvector for G, i.e. p(g)(v) = A(g)v for



some A(g) € C*, and necessarily A: G — C* is a homomorphism. Conversely,
if v is a (nonzero) common eigenvector for G, then C- v is a one dimensional
G-invariant subspace of V.

(4) An easy argument shows that the intersection of two G-invariant sub-
spaces is again G-invariant.

(5) If W7 is a G-invariant subspace of V' and W» is a G-invariant subspace
of Wy, then clearly W5 is a G-invariant subspace of V.

Definition 2.3. For a G-representation V, V¢ is defined as for G-sets:
VE={veV:plg)(v)=wvforall g e G}

It is a vector subspace of V, in fact a G-invariant subspace (possibly {0}).
For example, (C")%» = W] in the above notation.

Definition 2.4. If V; and V, are two G-representations, a G-morphism or
simply a morphism or an intertwining operator is a linear map F': V; — V5
such that, for all g € G, Fopy,(g9) = pv,(g) o F'. Equivalently, for all g € G,

PVQ(Q) OFOle(g)il =F.

The composition of two G-morphisms is a G-morphism. The set of all G-
morphisms F': V' — W is clearly a vector subspace of Hom(V, W); we denote
it by HomG(V7 W). The function F'is a G-isomorphism or simply an isomor-
phism if F is a linear isomorphism; in this case F~! is also a G-morphism.
The composition of two G-isomorphisms is a G-isomorphism. We use the
symbol 2 to denote G-isomorphism if the meaning is clear from the context.

Example 2.5. (1) If V is a G-representation and ¢t € C, then t1d: V — V
is a G-isomorphism.

(2) If G is abelian and V is a G-representation, then py (h) is a G-isomorphism
from V to itself for all h € G, because, for all g € G,

pv(h) o pv(g) = pv(hg) = pv(gh) = pv(g) o pv(h).

More generally, for an arbitrary G, if V' is a G-representation, then py (h) is
a G-isomorphism for all h € Z(G).

(3) For G = S,,, Vi = C" with the usual permutation representation of
Sn, and Vo = C viewed as the trivial representation of S,, the linear map
F(t1,...,tp) = > iy t; is an Sp-morphism of representations.

We leave the following as an exercise:



Lemma 2.6. If V; and Vs are two G-representations and F: Vi — Vs is a
G-morphism, then Ker F' is a G-invariant subspace of V1 and Im F' is a G-
inwvariant subspace of Vo. More generally, for every G-invariant subspace Wo
of Vo, F~Y(Ws) is a G-invariant subspace of Vy, and, for every G-invariant
subspace W1 of Vi, F(W1) is a G-invariant subspace of Va. O

3 New G-representations from old

In this section, we describe how the standard linear algebra constructions
lead to methods of constructing representations.

(1) If V1 and V3 are G-representations, then Vi @ V5 is also a representation,
via:

pvievs (9)(v1,v2) = (pvi (9)(v1), pra(9)(v2))-

In terms of matrices, for appropriate choices of bases, py,gv,(g) is written
in block diagonal form:

pviev,(9) = (pvb(g) pvig)> '

We are especially interested in internal direct sums. In fact, we have the
following:

Lemma 3.1. Let V be a G-representation. If Wi, Wa are two G-invariant
subspaces of V' such that V is the (internal) direct sum of the subspaces W1
and Wy, then the direct sum map W1 & Wo — V is a G-isomorphism.

Proof. The linear map F': W & Wy — V defined by F(w wz) = w; + ws is
a linear isomorphism, and we have to show that it is a G-morphism. Note
that, by definition, if w; € W;, then py (w;) = pw, (w;). Then

pv o F(wi,ws2) = py (w1 +wz2) = pv(wi1) + pv(w2) = pw, (w1) + pw, (w2)
= F(pWI (wl)asz (wQ)) =Fo pW169W2(w1>w2)'

Thus F is a G-morphism. O

(2) If V is a G-representation, then V* = Hom(V, C) is also a G-representation
via

pv-(9)(f) = fopvig™) = folpvig) ™)

The inverse is necessary to keep py+ a homomorphism.



(3) More generally, if V1 and V5 are G-representations, then Hom(V7, V2) is
as well, via

Prom(vi,va) (9)(F) = pvy(g) 0 F o pry (g~ ).

Here (2) is a special case where we view C as the trivial representation of G.
With this definition, the fixed subspace (Hom(Vi,V2))¢ = Hom®(V1, Va),
the space of G-morphisms from V; to V5.

(4) Finally, if V4 and V5 are G-representations, then V; ® V5 is as well, via

PViRVe = PV & PVy-

It is easy to check that the “natural” isomorphisms V 2 V** and
Hom(V,W) = V* @ W are all G-isomorphisms. However, in general V*
is not G-isomorphic to V.

4 Irreducible representations

Definition 4.1. A G-representation V' is irreducible if V' # {0}, and the
only G-invariant subspaces of V are V and {0}. A G-representation V is
reducible if it is not irreducible.

Example 4.2. (1) If dim V' = 1, then V is irreducible.

(2) A two dimensional representation is reducible <= there exists a com-
mon nonzero eigenvector for G.

(3) The standard representation C™ of S™ is not irreducible, since it has the
two subspaces W1, Wy. However, W7 is irreducible because dimW; = 1,
and we will see that W5 is also irreducible for every n > 2.

Lemma 4.3. IfV # {0}, then there exists a G-invariant subspace W # {0}
of V. which is an irreducible G-representation.

Proof. The proof is by complete induction on dimV. If dimV = 1, then
V' is irreducible and we can take W = V. For the inductive step, suppose
that the result has been proved for all representations of degree less than n.
Let V be a representation of degree n. If V is irreducible, then as before
we can take W = V. If V is not irreducible, then there exists a G-invariant
subspace V' of V with 1 < deg V' < deg V' = n. By the inductive hypothesis,
there exists a G-invariant subspace W # {0} of V/ which is an irreducible
G-representation. Then W is a nonzero G-invariant subspace of V' which
is an irreducible G-representation. This completes the inductive step and
hence the proof. O



Lemma 4.4. Let F': V — W be a morphism of G-representations.
(i) If V is irreducible, then F is either O or injective.
(ii) If W is irreducible, then F' is either O or surjective.
(iii) If both V and W are irreducible, then F is either O or an isomorphism.

Proof. (i) We have seen that Ker F' is a G-invariant subspace of V. Hence
either Ker F'{0} or Ker F = V. In the first case, F' is injective, and in the
second case F' = 0.

(ii) Similarly, Im F' is a G-invariant subspace of W. Hence either Im F' = {0}
or Im F' = W. In the first case, F' = 0, and in the second case F' is surjective.

(iii) This follows from (i) and (ii). O

Proposition 4.5 (Schur’s lemma). Let V' be an irreducible G-representation
and let F € Hom®(V,V). Then there exists a t € C such that F = t1d.
Hence, if V and W are two irreducible G-representations, then either V is
not isomorphic to W and HomG(V, W) =0, orV is isomorphic to W and
dim Hom®(V, W) = 1.

Proof. We have seen that every element of Hom®(V, V) is either 0 or an iso-
morphism. Let F' € Hom%(V, V). Then there exists a (nonzero) eigenvector
v € V, i.e. a nonzero v € V such that there exists a ¢t € C with F(v) = tv.
Thus, the G-morphism F —tId is not invertible, since v € Ker(F —¢1d) and
v # 0. It follows that F' —t1d = 0. Hence F' = t1d.

For the proof of the last statement, if V and W are not isomorphic, then,
by (iii) of Lemma 4.4, Hom®(V,W) = 0. If V is G-isomorphic to W, we
may as well assume that V' = W, and then the argument above shows that
Hom%(V, V) 2 C, hence has dimension one. O

Remark 4.6. The proof above used the fact that the characteristic poly-
nomial of F' had a root, which follows since every nonzero polynomial with
coefficients in C has a root in C. In the terminology of Modern Algebra
II, C is algebraically closed. In general, for a field k, we have defined k-
representations and can speak of a k-representation V' # {0} as being k-
irreducible, i.e. there are no G-invariant k-subspaces of V except for {0}
and V. The proof of Schur’s lemma then shows that Hom%(V, V) is a divi-
sion ring containing k as a subfield. There exist examples of R-irreducible
R-representations V' for which the ring HomG(V7 V') is isomorphic to C, and
examples where Hom® (V, V) is isomorphic to H.



We turn next to the construction of G-invariant projections. Here, the
methods will only work in the case of a finite group (although we shall
make some remarks about other cases later).

Proposition 4.7. Let G be a finite group. Suppose that V is a G-represen-
tation, and define p: V —V

1
p(v) = M ;PV(Q)(U)~

Then p is a G-morphism with Imp = V¢ and p(v) = v for allv € VC, i.e.
p is a G-invariant projection from V' to VY. Hence, as G-representations,
V=VE W, where W = Kerp is a G-invariant subspace.

Proof. First, if v € V&, then by definition py(g)(v) = v for all g € G. Thus

1 1 1
p(v) = #(G)gezépv(g)(v) = W ZU = m(#(G)U) =v.

geG

In particular, V¢ C Imp.
Next, if h € G and v € V, then

1 1
(h)p(w) =pv(h) | A+ (@) | = 7~ (h) o pv(g)(v)
pv (h)p pv e g;pv g e g;pv pv (g
1
= ) S o)

But, as g runs through G, hg also runs through the elements of G. Hence
1 1
= > ov(hg)(v) = 7= > pv(9)(v) = p(v).
#E) 2 #0) 2

Thus, for all v € V and h € G, py(h)p(v) = p(v). Hence Imp C V&, and so
Imp = VY since we have already showed that V& C Imp. It follows that
V =W @ VY (internal direct sum), where W = Ker p.

Next we show that p is a G-morphism. This is a very similar argument
to the proof above that Imp C V. Since the G-action on Imp = V& is
trivial, it suffices to show that p o py(h) = p for all h € G. But

porv(h) = 2 S pv(e) opv(h) = e S pvlah).

geG geqG



As before, as g runs through G, gh also runs through the elements of G.
Thus

1 1
#(G)g;;pv(gh) = #(G)QEZGPV(Q) =p,

so that po py(h) =p = py(h)op for all h € G.
Finally, since p is a G-morphism, W = Kerp is a G-invariant subspace
of V. We have seen that, as G-representations, V = W @ VC. O

Remark 4.8. If V& = {0}, then Proposition 4.7 tells us that, for all v € V,

S prlg)(v) = 0.

geG

Definition 4.9. V is decomposable if there exist two nonzero G-invariant
subspaces Wy, Wy of V such that V = W1 @& Wy, V is completely reducible
if V' # 0 and there exist irreducible G-representations Vi, ..., Vj such that
VEVid- - & Vi For example, an irreducible representation is completely
reducible (take & = 1 above). Clearly, if V' = W, @ Wy and Wi, Wy are
completely reducible, then V is completely reducible as well.

Theorem 4.10 (Maschke’s theorem). If G is finite and W is a G-invariant
subspace of G, then there exists a G-invariant subspace W' of V' such that
VewaeWw.

Proof. We will find a G-morphism p: V' — V such that Imp C W and
p(w) = w for all w € W. Setting W’ = Kerp, it then follows that W' is
also G-invariant, and that V is the internal direct sum of W and W’. Then
Lemma 3.1 implies that the sum map W & W’ — V is an isomorphism of
G-representations.

To find p, begin by choosing an arbitrary linear map pg: V. — V such
that Impy € W and po(w) = w for all w € W. For example, choose a
basis wy, . .., W, Wat1,--.,wy of V such that wy, ..., w, is a basis of W and
define py by defining it on the basis vectors w; by defining

(w;) w;, ifi<a;
w;) =
bo 0, ifi>a.

P= i Lvo) omon o) = i 3 ot (5) 0



viewing pp as an element of the G-representation Hom(V,V'). By Proposi-
tion 4.7, p € Hom®(V, V), so that p is a G-morphism. Since Impy C W and
W is G-invariant, Imp C W. Finally, if w € W, then py(g9) ' (w) € W as
well, again since W is G-invariant. Then po(py(g)~*(w)) = pv(g)~*(w) by
construction, and so

1 1
pv(9)(po(pv(9) " (W) = == > pv(9)(pv(9)H(w))
=G 2 #6) 2
1
w =
"G Z
Thus p has the desired properties. ]

Corollary 4.11. If G is finite, then every nonzero G-representation V is
completely reducible.

Proof. The proof is by complete induction on the degree of a G-representation.
If dimV = 1, then V is irreducible and so (as we have already noted) it is
completely reducible. Now suppose that the corollary has been proved for
all representations of degree less than n. If V' is a representation of degree
n, first suppose that V is irreducible. Then as above V is completely re-
ducible. Otherwise, V is reducible, so there exists a G-invariant subspace
W of V with 0 < degW < n. By Maschke’s theorem, V is G-isomorphic to
W & W', where degW’' = n — deg W, and hence 0 < degW' < n as well.
By the inductive hypothesis, W and W’ are completely reducible. Thus,
V =W @ W’ is completely reducible as well. O

Corollary 4.12. Suppose that G is a finite abelian group. Then every
nonzero G-representation V is a direct sum of one dimensional representa-
tions. Equivalently, there is a basis of V' consisting of common eigenvectors

for G.

Proof. 1t is clearly enough to prove that, if G is a finite abelian group,
then every irreducible representation of GG is one-dimensional. Let V be
an irreducible G-representation. In particular V # 0. By Schur’s lemma,
Hom®(V,V) = C-1Id. On the other hand, we have seen that, if G is abelian,
then, for every g € G, py(g) € Hom®(V, V), and hence py(g) = A(g)Id for
some A(g) € C*. Thus, choosing some nonzero v € V, py(g) = A(g)v for
every g € G. It follows that the one-dimensional subspace C - v = span{v}
is a G-invariant, nonzero subspace of V. Since V is irreducible, V = C - v
and hence V is one-dimensional. O

10



Corollary 4.13. If A € GL(n,C) is a matriz of finite order d, then A is
diagonalizable and its eigenvalues are d* roots of unity.

Proof. If A has order d, then A defines a representation of Z/dZ on C" by:
p(k) = AF. Then by the previous corollary, C" is a direct sum of eigenspaces
for A. Since A? =1d, it is clear that all of the eigenvalues of A are d*" roots
of unity. O

Corollary 4.14. If G is a finite group and V is a G-representation, then,
for all g € G, the linear map py(g): V. — V is diagonalizable, and its
eigenvalues are d* roots of unity, where d divides #(G).

Proof. Every element g of G has finite order dividing #(G), by Lagrange’s
theorem. Moreover, py (g) has finite order dividing the order of g, and hence
dividing #(G). Then apply the previous corollary. O

Remark 4.15. For a not necessarily finite group G, a G-representation V' is
unitary if there exists a positive definite Hermitian inner product H which
is G-invariant, i.e. for which H (py (g)v, pv(9)w) = H(v,w), for all v,w € V
and g € G. If V is unitary, then there exists a basis of V' for which py(g)
is unitary for all g € G, i.e. there exists a choice of basis for which py is a
homomorphism to U(n). Every unitary representation satisfies Maschke’s
theorem, because if W C V is G-invariant, then W is also G-invariant and
V=W eWL. If G is finite, then there always exists a G-invariant positive
definite Hermitian inner product H: start with an arbitrary positive definite
Hermitian inner product Hy, and set

H(v,w) =Y Holpv(g)v, pv(g)w).
geG

Then H is G-invariant.

Example 4.16. We have seen that every A € GL(n,C) defines a represen-
tation of Z on C", via p(n) = A™. In particular, defines a Z-representation
. 11 1
on C? by taking A = <0 1) and hence A" = (0 Tf) Note that A"e; = e
and A"ey = eo + ney. Thus C - e is a Z-invariant subspace. In fact, it is
the unique Z-invariant subspace: if W # {0},C? is an invariant subspace,
then dimW =1 and W = C - w where w is a nonzero eigenvector for A and
hence A™. But A has a unique nonzero eigenvector up to a scalar, namely e .
It follows that the Z-representation C? is not completely reducible. Hence
there is no Z-invariant positive definite Hermitian inner product on C2.

From now on, G will always denote a finite group.
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