
Real and complex inner products

We discuss inner products on finite dimensional real and complex vector
spaces. Although we are mainly interested in complex vector spaces, we
begin with the more familiar case of the usual inner product.

1 Real inner products

Let v = (v1, . . . , vn) and w = (w1, . . . , wn) ∈ Rn. We define the inner
product (or dot product or scalar product) of v and w by the following
formula:

〈v, w〉 = v1w1 + · · ·+ vnwn.

Define the length or norm of v by the formula

‖v‖ =
√
〈v, v〉 =

√
v21 + · · ·+ v2n.

Note that we can define 〈v, w〉 for the vector space kn, where k is any
field, but ‖v‖ only makes sense for k = R.

We have the following properties for the inner product:

1. (Bilinearity) For all v, u, w ∈ Rn, 〈v + u,w〉 = 〈v, w〉 + 〈u,w〉 and
〈v, u + w〉 = 〈v, u〉 + 〈v, w〉. For all v, w ∈ Rn and t ∈ R, 〈tv, w〉 =
〈v, tw〉 = t〈v, w〉.

2. (Symmetry) For all v, w ∈ Rn, 〈v, w〉 = 〈w, v〉.

3. (Positive definiteness) For all v ∈ Rn, 〈v, v〉 = ‖v‖2 ≥ 0, and 〈v, v〉 = 0
if and only if v = 0.

The inner product and norm satisfy the familiar inequalities:

1. (Cauchy-Schwarz) For all v, w ∈ Rn, |〈v, w〉| ≤ ‖v‖‖w‖, with equality
⇐⇒ v and w are linearly dependent.
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2. (Triangle) For all v, w ∈ Rn, |v+w‖ ≤ ‖v‖+ ‖w‖, with equality ⇐⇒
v is a positive scalar multiple of w or vice versa.

3. For all v, w ∈ Rn, |‖v‖ − ‖w‖| ≤ ‖v − w‖.

Recall that the standard basis e1, . . . , en is orthonormal:

〈ei, ej〉 = δij =

{
1, if i = j;

0, if i 6= j.

More generally, vectors u1, . . . , un ∈ Rn are orthonormal if, for all i, j,
〈ui, uj〉 = δij , i.e. 〈ui, ui〉 = ‖ui‖2 = 1, and 〈ui, uj〉 = 0 for i 6= j. In
this case, u1, . . . , un are linearly independent and hence automatically a ba-
sis of Rn. One advantage of working with an orthonormal basis u1, . . . , un
is that, for an arbitrary vector v, it is easy to read off the coefficients of
v with respect to the basis u1, . . . , un, i.e. if v =

∑n
i=1 tiui is written as a

linear combination of the ui, then clearly

〈v, ui〉 =

n∑
j=1

tj〈uj , ui〉 = ti.

Equivalently, for all v ∈ Rn,

v =
n∑

i=1

〈v, ui〉ui.

We have the following:

Proposition 1.1 (Gram-Schmidt). Let v1, . . . , vn be a basis of Rn. Then
there exists an orthonormal basis u1, . . . , un of Rn such that, for all i, 1 ≤
i ≤ n,

span{v1, . . . , vi} = span{u1, . . . , ui}.

In particular, for every subspace W of Rn, there exists an orthonormal basis
u1, . . . , un of Rn such that u1, . . . , ua is a basis of W .

Proof. Given the basis v1, . . . , vn, we define the ui inductively as follows.
Since v1 6= 0, ‖v1‖ 6= 0. Set u1 = 1

‖v1‖v1, a unit vector (i.e. ‖u1‖ = 1). Now
suppose inductively that we have found u1, . . . , ui such that, for all k, ` ≤ i,
〈uk, u`〉 = δk`, and such that span{v1, . . . , vi} = span{u1, . . . , ui}. Define
v′i+1 = vi+1 −

∑i
j=1〈vi+1, uj〉uj . Clearly

span{v1, . . . , vi+1} = span{u1, . . . , ui, v′i+1}.
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Thus, v′i+1 6= 0, since otherwise dim span{v1, . . . , vi+1} would be less than i.
Also, for k ≤ i,

〈v′i+1, uk〉 = 〈vi+1, uk〉 −
i∑

j=1

〈vi+1, uj〉〈uj , uk〉 = 〈vi+1, uk〉 − 〈vi+1, uk〉 = 0.

Set ui+1 = 1
‖v′i+1‖

v′i+1. Then ui+1 is a unit vector and (since ui+1 is a scalar

multiple of v′i+1) 〈ui+1, uk〉 = 0 for all k ≤ i. This completes the inductive
definition of the basis u1, . . . , un, which has the desired properties. The final
statement is then clear, by starting with a basis v1, . . . , vn of Rn such that
v1, . . . , va is a basis of W .

The construction of the proof above leads to the construction of orthog-
onal projections. If W is a subspace of Rn, then there are many different
complements to W , i.e. subspaces W ′ such that Rn is the direct sum W⊕W ′.
Given the inner product, there is a natural choice:

Definition 1.2. Let X ⊆ Rn. Then

X⊥ = {v ∈ Rn : 〈v, x〉 = 0 for all x ∈ X}.
It is easy to see from the definitions that X⊥ is a subspace of Rn and

that X⊥ = W⊥, where W is the smallest subspace of Rn containing X,
which we can take to be the set of all linear combinations of elements of X.
In particular, if W = span{w1, . . . , wa}, then

W⊥ = {v ∈ Rn : 〈v, wi〉 = 0, 1 ≤ i ≤ a}.
Proposition 1.3. If W is a vector subspace of Rn, then Rn is the direct
sum of W and W⊥. In this case, the projection p : Rn →W with kernel W⊥

is called the orthogonal projection onto W .

Proof. We begin by giving a formula for the orthogonal projection. Let
u1, . . . , un be an an orthonormal basis of Rn such that u1, . . . , ua is a basis
of W , and define

pW (v) =
a∑

i=1

〈v, ui〉ui.

Clearly Im pW ⊆ W . Moreover, if w ∈ W , then there exist ti ∈ R with
w =

∑a
i=1 tiui, and in fact ti = 〈w, ui〉. Thus, for all w ∈W ,

w =
a∑

i=1

〈w, ui〉ui = pW (w).

Finally, v ∈ Ker pW ⇐⇒ 〈v, ui〉 = 0 for 1 ≤ i ≤ a ⇐⇒ v ∈W⊥. It follows
that Rn = W ⊕W⊥ and that pW is the corresponding projection.
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2 Symmetric and orthogonal matrices

Let A be an m × n matrix with real coefficients, corresponding to a linear
map Rn → Rm which we will also denote by A. If A = (aij), we define the
transpose tA to be the n×m matrix (aji); in case A is a square matrix, tA
is the reflection of A about the diagonal going from upper left to lower right.
Since tA is an n ×m matrix, it corresponds to a linear map (also denoted
by tA) from Rm to Rn. Since a(ei) =

∑m
j=1 ajiej , it is easy to see that one

has the formula: for all v ∈ Rn and w ∈ Rm,

〈Av,w〉 = 〈v, tAw〉,

where the first inner product is of two vectors in Rm and the second is of two
vectors in Rn. In fact, using bilinearity of the inner product, it is enough to
check that 〈Aei, ej〉 = 〈ei, tAej〉 for 1 ≤ i ≤ n and 1 ≤ j ≤ m, which follows
immediately. From this formula, or directly, it is easy to check that

t(BA) = tAtB

whenever the product is defined. In other words, taking transpose reverses
the order of multiplication. Finally, we leave it as an exercise to check that,
if m = n and A is invertible, then so is tA, and in fact

(tA)−1 = t(A−1).

Note that all of the above formulas make sense when we replace R by an
arbitrary field k.

If A is a square matrix, then tA is also a square matrix, and we can
compare A and tA.

Definition 2.1. Let A ∈ Mn(R), or more generally let A ∈ Mn(k). Then
A is symmetric if A = tA. Equivalently, for all v, w ∈ Rn,

〈Av,w〉 = 〈v,Aw〉.

Definition 2.2. Let A ∈ Mn(R). Then A is an orthogonal matrix if, for
all v, w ∈ Rn, 〈Av,Aw〉 = 〈v, w〉. In other words, A preserves the inner
product.

Lemma 2.3. Let A ∈Mn(R). Then the following are equivalent:

(i) A is orthogonal, i.e. for all v, w ∈ Rn, 〈Av,Aw〉 = 〈v, w〉.

(ii) For all v ∈ Rn, ‖Av‖ = ‖v‖, i.e. A preserves length.
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(iii) A is invertible, and A−1 = tA.

(iv) The columns of A are an orthonormal basis of Rn.

(v) The rows of A are an orthonormal basis of Rn.

Proof. (i) =⇒ (ii): Clear, since we can take w = v. (ii) =⇒ (i): Follows
from the polarization identity : For all v, w ∈ Rn,

2〈v, w〉 = ‖v + w‖2 − ‖v‖2 − ‖w‖2.

(i) =⇒ (iii): Suppose that, for all v, w ∈ Rn, 〈Av,Aw〉 = 〈v, w〉. Now
〈Av,Aw〉 = 〈v, tAAw〉, and hence, for all w ∈ Rn, 〈v, w〉 = 〈v, tAAw〉 for all
v ∈ Rn. It follows that

〈v, w − tAAw〉 = 0.

In other words, for every w ∈ Rn, w− tAAw is orthogonal to every v ∈ Rn,
hence w − tAAw = 0, w = tAAw, and so tAA = Id. Thus A−1 = tA.

(iii) =⇒ (i): If A−1 = tA, then, for all v, w ∈ Rn,

〈Av,Aw〉 = 〈v, tAAw〉 = 〈v,A−1Aw〉 = 〈v, w〉.

(iii) ⇐⇒ (iv): In general, the entries of tAA are the inner products 〈ci, cj〉,
where c1, . . . , cn are the columns of A. Thus, the columns of A are an
orthonormal basis of Rn ⇐⇒ tAA = Id ⇐⇒ A−1 = tA. (iii) ⇐⇒ (v):
Similar, using the fact that the entries of AtA are the inner products 〈ri, rj〉,
where r1, . . . , rn are the rows of A.

Definition 2.4. The orthogonal group O(n) is the subgroup of GL(n,R)
defined by

O(n) = {A ∈ GL(n,R) : A−1 = tA}.

Thus O(n) is the set of all orthogonal n× n matrices.

Proposition 2.5. O(n) is a subgroup of GL(n,R).

Proof. Clearly Id ∈ O(n). Next, we show that O(n) is closed under matrix
multiplication: if A,B ∈ O(n), then, for all v, w ∈ Rn, 〈Av,Aw〉 = 〈v, w〉
and 〈Bv,Bw〉 = 〈v, w〉. Thus 〈ABv,ABw〉 = 〈Bv,Bw〉 = 〈v, w〉, and so
AB ∈ O(n). Finally, if A ∈ O(n), then 〈Av,Aw〉 = 〈v, w〉 for all v, w ∈ Rn.
Replacing v by A−1v and w by A−1w gives: for all v, w ∈ Rn,

〈A(A−1v), A(A−1w)〉 = 〈A−1v,A−1w〉.

Since 〈A(A−1v), A(A−1w)〉 = 〈v, w〉, we see that 〈A−1v,A−1w〉 = 〈v, w〉 for
all v, w ∈ Rn, so that A−1 ∈ O(n).
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Remark 2.6. It is also easy to prove the above proposition by using: (i) if
A,B ∈ O(n), then

t(AB) = tBtA = B−1A−1 = (AB)−1,

(ii) tI = I, and (iii) if A ∈ O(n), then

t(A−1) = (tA)−1 = (A−1)−1 (= A).

It is easy to see from tAA = Id that, if A ∈ O(n), then detA = ±1. We
define the special orthogonal group SO(n) to be the subgroup

SO(n) = {A ∈ O(n) : detA = 1}.

Since SO(n) = Ker det : O(n) → R (the restriction of the determinant ho-
momorphism to the group O(n)), SO(n) is in fact a normal subgroup of
O(n) of index two.

3 General inner products

Let V be a finite dimensional R-vector space and let B : V × V → R be a
general bilinear function. More generally, for any field k and finite dimen-
sional k-vector space V , let B : V ×V → k be a bilinear function. Note that
we require the range of B to be the field k, not some general k-vector space.

Definition 3.1. The bilinear function B is a symmetric bilinear form if, for
all v, w ∈ V , B(v, w) = B(w, v).

In general, a bilinear function B : V ×W → U defines two linear maps
(FB)1 : V → Hom(W,U) and (FB)2 : W → Hom(V,U), by the formulas

(FB)1(v)(w) = B(v, w);

(FB)2(w)(v) = B(v, w).

In other words, by the definition of bilinear, for a fixed v, the function
w 7→ B(v, w) is a linear map from W to U , thus an element of Hom(W,U),
and this function depends linearly on v. This defined (FB)1, by the property
that

(FB)1(v)(w) = B(v, w).

The function (FB)2 is defined similarly. Conversely, if Φ: V → Hom(W,U)
is linear, then, by definition, if we define B : V ×W → U via

B(v, w) = Φ(v)(w),
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then B is bilinear. This construction sets up an isomorphism from the vector
space of bilinear maps from V×W to U is identified with Hom(V,Hom(W,U)),
and also with Hom(W,Hom(V,U)). In case V = W and U = k, (FB)1 and
(FB)2 are both elements of Hom(V, k) = V ∗, and the condition that B is
symmetric is just the condition that (FB)1 = (FB)2.

Remark 3.2. A more abstract way to give this construction (but only in the
finite dimensional case) is as follows. The vector space of bilinear functions
from V ×W to U is identified with Hom(V ⊗W,U). In case V,W,U are
finite dimensional, there are “natural” isomorphisms

Hom(V ⊗W,U) ∼= (V ⊗W )∗ ⊗ U ∼= (V ∗ ⊗W ∗)⊗ U ∼= V ∗ ⊗ (W ∗ ⊗ U)
∼= Hom(V,W ∗ ⊗ U) ∼= Hom(V,Hom(W,U)).

There is a similar isomorphism Hom(V ⊗W,U ∼= Hom(W,Hom(V,U)).

Definition 3.3. The symmetric bilinear form B : V × V → k is non-
degenerate if (FB)1 and (FB)2 are isomorphisms.

Lemma 3.4. The symmetric bilinear form B is non-degenerate ⇐⇒ for
all v ∈ V , v 6= 0, there exists a w ∈ V such that B(v, w) 6= 0.

Proof. Since V and hence V ∗ are finite dimensional, and dimV ∗ = dimV ,
(FB)1 is an isomorphism ⇐⇒ it is injective, ⇐⇒ Ker(FB)1 = {0}. This
is equivalent to the condition that, for all v ∈ V , if v 6= 0 then (FB)1(v) 6= 0,
which in turn is equivalent to the statement that, for all v ∈ V , v 6= 0, there
exists a w ∈ V such that B(v, w) 6= 0.

Definition 3.5. For k = R, a symmetric bilinear form B is positive definite
if, for all v ∈ V , B(v, v) ≥ 0 and B(v, v) = 0 ⇐⇒ v = 0.

In the case k = R, if B is positive definite, then it is non-degenerate, since
we can just take w = v in the definition of non-degenerate. However, there
are many non-degenerate symmetric bilinear forms B which are not positive
definite, and for other fields (such as C), the notion of positivity makes no
sense and it is often the case that, for example, for every symmetric bilinear
form B, there exists a vector v ∈ V such that B(v, v) = 0. For example,
in case k = C, this happens for every finite dimensional C-vector space of
dimension at least 2.

Let V be a finite dimensional R-vector space and B a positive definite
symmetric bilinear form on V . Then we can define the length with respect
to B as follows:

‖v‖B =
√
B(v, v).
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It is easy to see that the proofs of the Cauchy-Schwarz and triangle inequal-
ities can be modified to cover this case.

If B is a positive definite symmetric bilinear form on a finite dimensional
R-vector space V , then we define a B-orthonormal basis of V to be a basis
u1, . . . , un such thatB(ui, uj) = δij . Then the proof of Gram-Schmidt shows:

Proposition 3.6 (Gram-Schmidt). Let V be a finite dimensional R-vector
space and B a positive definite symmetric bilinear form on V . Let v1, . . . , vn
be a basis of V . Then there exists a B-orthonormal basis u1, . . . , un of V
such that, for all i, 1 ≤ i ≤ n,

span{v1, . . . , vi} = span{u1, . . . , ui}.

In particular, for every subspace W of V , there exists a B-orthonormal basis
u1, . . . , un of V such that u1, . . . , ua is a basis of W .

In particular, a B-orthonormal basis of V always exists. In such a basis
u1, . . . , un, B looks like the usual inner product in the sense that, for all
si, ti ∈ R,

B(

n∑
i=1

siui,

n∑
i=1

tiui) =

n∑
i=1

siti = 〈(s1, . . . , sn), (t1, . . . , tn)〉.

Equivalently, if F : Rn → V is the isomorphism defined by the basis u1, . . . , un,
so that F (t1, . . . , tn) =

∑
i tiui, then, for all t = (t1, . . . , tn), s = (s1, . . . , sn),

B(F (s), F (t)) = 〈s, t〉.

We can also define: an element F : V → V is symmetric or orthogonal
with respect to B. For example, F is symmetric with respect to B if, for
all v, w ∈ V , B(F (v), w) = B(v, F (w)). This definition, which works for
any field k and any non-degenerate symmetric bilinear form B, translates
into the statement that the linear map F ∗ : V ∗ → V ∗ is identified with F
under the isomorphism V ∗ ∼= V coming from B. Likewise, F is orthogonal
with respect to B if, for all v, w ∈ V , B(F (v), F (w)) = B(v, w). It is
straightforward to check:

Lemma 3.7. Let V be a finite dimensional R-vector space, let B be a
positive definite symmetric bilinear form on V , and let u1, . . . , un be a B-
orthonormal basis of V . Suppose that F : V → V is a linear map and that
A is the matrix of F with respect to the basis u1, . . . , un (for both domain
and range). Then

(i) F is symmetric with respect to B ⇐⇒ A is a symmetric matrix.

(ii) F is orthogonal with respect to B ⇐⇒ A is an orthogonal matrix.
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4 The complex case

We now discuss how the above picture needs to modified when k = C. As
noted above, the form 〈, 〉 is not positive definite, or even real valued, when
k = C. To rectify this problem, we use complex conjugation: recall that, if
z = a+bi ∈ C, then the complex conjugate z̄ = a−bi. Complex conjugation
is an automorphism of C: z + w = z̄+ w̄, and zw = z̄w̄. Clearly z̄ = z ⇐⇒
z ∈ R (the fixed subfield of C under conjugation is R). Moreover, |z|2 = zz̄
is always real and nonnegative, and |z| =

√
a2 + b2 satisfies: |zw| = |z||w|,

|z| = 0 ⇐⇒ z = 0, and, if z 6= 0, then z−1 = z̄/|z|2. In particular, z
satisfies: |z| = 1 ⇐⇒ z̄ = z−1.

For v = (v1, . . . , v2) and w = (w1, . . . , wn) ∈ Cn, define the standard
Hermitian inner product

〈v, w〉 =

n∑
i=1

viw̄i.

Thus, for C, 〈, 〉 is not bilinear. It satisfies:

1. (Additivity) For all v, u, w ∈ Cn, 〈v + u,w〉 = 〈v, w〉 + 〈u,w〉 and
〈v, u + w〉 = 〈v, u〉 + 〈v, w〉. For all v, w ∈ Cn and t ∈ C, 〈tv, w〉 =
t〈v, w〉 and 〈v, tw〉 = t̄〈v, w〉.

2. (Conjugate symmetry) For all v, w ∈ Cn, 〈w, v〉 = 〈v, w〉.

3. (Positive definiteness) For all v ∈ Cn, 〈v, v〉 = ‖v‖2 ≥ 0, and 〈v, v〉 = 0
if and only if v = 0.

We summarize Property (1) by saying that 〈, 〉 is linear in the first vari-
able but conjugate linear in the second.

Using the above definition of the norm, an argument as in the real case
(but slightly more involved) says that the Cauchy-Schwarz and triangle in-
equalities hold (of course, the triangle inequality for Cn follows from the
triangle inequality for R2n as well).

We can still define the notion of an orthonormal basis u1, . . . , un of Cn

(sometimes called a unitary basis). Note that 〈ui, uj〉 = δij ⇐⇒ 〈uj , ui〉 =
δij , since δij is either 0 or 1 and these are both real. The analogue of
Gram-Schmidt holds, with the same proof:

Proposition 4.1. Let v1, . . . , vn be a basis of Cn. Then there exists an
orthonormal basis u1, . . . , un of Cn such that, for all i, 1 ≤ i ≤ n,

span{v1, . . . , vi} = span{u1, . . . , ui}.
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In particular, for every subspace W of Cn, there exists an orthonormal basis
u1, . . . , un of Cn such that u1, . . . , ua is a basis of W .

Further note that 〈v, w〉 = 0 ⇐⇒ 〈w, v〉 = 0 ⇐⇒ for all t ∈ C,
〈tv, w〉 = 0. In particular, if X ⊆ Cn and we define

X⊥ = {v ∈ Cn : 〈v, w〉 = 0 for all w ∈ X},

then:

1. X⊥ is a (C-)vector subspace of Cn;

2. X⊥ = W⊥, where W is the smallest subspace of Cn containing X;

3. If W = span{w1, . . . , wa} (where we take the span in the sense of
C-vector spaces), then

W⊥ = {w1, . . . , wa}⊥ = {v ∈ Cn : 〈v, wi〉 = 0, 1 ≤ i ≤ a}

Then, if W is a vector subspace of Cn, we can define the orthogonal projec-
tion pW : Cn → Cn as before: choose an orthonormal basis u1, . . . , ua of W
and define

pW (v) =
a∑

i=1

〈v, ui〉ui.

Since inner product is linear in the first variable, pW : Cn → Cn is (C-)linear,
and defines an isomorphism of Cn with the direct sum W ⊕W⊥.

We have the analogue of the transpose and symmetric and unitary ma-
trices: If A ∈ Mm,n(C) is an m × n matrix, corresponding to a linear map
Cn → Cm, then there is a unique matrix A∗ ∈Mn,m(C) which satisfies

〈Av,w〉 = 〈v,A∗w〉

for all v ∈ Cn and w ∈ Cm. In fact, it is easy to see from the definition that,
if A = (aij), then

A∗ = (āji) = (tA) = t(A).

The matrix A is called the adjoint matrix. In particular, if n = m, we have:

Definition 4.2. Let A ∈Mn(C) Then A is self-adjoint if A∗ = A, i.e. if, for
all v, w ∈ Cn,

〈Av,w〉 = 〈v,Aw〉.

For an n×n matrix A, we have detA∗ = detA. Hence, if A is self-adjoint,
then detA ∈ R.
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Definition 4.3. Let A ∈ Mn(C). Then A is an orthogonal matrix if, for
all v, w ∈ Cn, 〈Av,Aw〉 = 〈v, w〉. In other words, A preserves the inner
product.

An argument as in the real case then shows:

Lemma 4.4. Let A ∈Mn(C). Then the following are equivalent:

(i) A is unitary, i.e. for all v, w ∈ Cn, 〈Av,Aw〉 = 〈v, w〉.

(ii) For all v ∈ Cn, ‖Av‖ = ‖v‖.

(iii) A is invertible, and A−1 = A∗.

(iv) The columns of A are an orthonormal basis of Cn.

(v) The rows of A are an orthonormal basis of Cn.

Definition 4.5. The unitary group U(n) is the subgroup of GL(n,C) de-
fined by

U(n) = {A ∈ GL(n,C) : A−1 = A∗}.

Thus U(n) is the set of all unitary n × n matrices. Arguing as in the real
case, it is easy to check that U(n) is a subgroup of GL(n,C). A homework
problem shows that, if A ∈ U(n), then detA is a complex number of absolute
value 1. The special unitary group SU(n) is the subgroup of U(n) defined
by

SU(n) = {A ∈ U(n) : detA = 1}.

Since SU(n) is the kernel of det : U(n) → C∗, SU(n) is a normal subgroup
of U(n).

Finally, we discuss the abstract version of the complex inner product.

Definition 4.6. Let V be a finite dimensional complex vector space. A
Hermitian form on V is a function H : V × V → C satisfying:

1. For all v, u, w ∈ V , H(v+u,w) = H(v, w)+H(u,w) and H(v, u+w) =
H(v, u) + H(v, w). For all v, w ∈ V and t ∈ C, H(tv, w) = tH(v, w)
and H(v, tw) = t̄H(v, w).

2. For all v, w ∈ V , H(w, v) = H(v, w).

The Hermitian form H is positive definite if, for all v ∈ V , H(v, v) ≥ 0 and
H(v, v) = 0 ⇐⇒ v = 0.
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Then, as in the real case, we can define an H-orthonormal basis, and the
complex analogue of the Gram-Schmidt theorem holds. Likewise, given a
linear map F : V → V , we can define: F is H-self-adjoint or F is H-unitary.
One important difference, though, which is already present in the case of
the standard inner product 〈, 〉, is that, for a fixed w ∈ V , the function
v 7→ H(v, w) is complex linear, i.e. it is an element of V ∗, but the function
(FH)2 defined by

(FH)2(w)(v) = H(v, w),

which maps V to V ∗, is not a complex linear map from V to V ∗. In fact, it
satisfies

(FH)2(tw) = t̄(FH)2(w).

Likewise, the function (FH)1(v) : V → V defined by

(FH)1(v)(w) = H(v, w)

is not an element of V ∗, because it is not linear! The function (FH)1(v)
satisfies:

(FH)1(v)(tw) = t̄(FH)1(v)(w),

and hence (FH)1(v) is an element of (V )∗, the conjugate dual space.
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