More on induced representations

1 The case of a normal subgroup

Let G be a finite group and let H be a normal subgroup of G. For an
H-representation, we want to give a formula for Res% Ind% W. First, some
notation: if x € G and h € H, then hx = xh’ for some h' € H, where
h' = z~'hz. In particular, writing as usual 1 = 1,...,z for a set of
representatives for the left cosets of H,

This says that
Pnd¢ w () (Fiw) = Fi,pw(wflhxi)'

In particular, the vector subspaces W) = {Fiw : w € W are invariant under
the restriction of P1ndG w to elements of H, i.e. they are PResG, w-invariant
subspaces.

Given z € G, since H is normal, we have iy(H) C H, and in fact
iz H — H is an isomorphism from H to H, where by definition

iz(g9) = zgx L.

Define W, to be the H-representation given by the homomorphism py o
iyt H — Aut W. Explicitly:
pw.(9) = pw(z ™~ gz).

In particular, for 1 < i < k, we have the H-representation W;,. Then the
calculations above show:

Proposition 1.1. As H-representations,

k
Resfy Indf W = P W,,. O
=1



This formula allows us to describe when Ind% W is irreducible. Note
that, if W is reducible, say W = W, @ W, as H-representations, then it is
easy to see that Ind% W = Indg W1 @ Ind$ Wo, and hence is also reducible.
Thus we may as well assume that W is irreducible.

Theorem 1.2. Suppose that H is a normal subgroup of G and that W is
an irreducibleH -representation. Then Indg W is an irreducible G represen-
tation <= for all x € G with x ¢ H, W, is not H-isomorphic to W.

Proof. Since W is irreducible, (xw,xw)zr = 1. We wish to see when
<X1ndf1 W XInd¢ w)c = 1. In any case, by Frobenius reciprocity,

k

<X1ndg W XInd$ WG = <XW7XResg Ind$ wH = Z<XW,XWIZ.>H,
i=1
by Proposition 1.1. For i =1, W,, = W; = W and hence (xw, xw,)z = 1.
For i > 1, W, is an irreducible representation and so (xw, XW%> g =1if
Wy, = W and <XW’XWIZ.>H = 0 if Wy, is not H-isomorphic to W. Thus
Indf; W is irreducible <= (Xgpag w Xnag w)e = 1 <= forall i > 1,
Wy, is not H-isomorphic to W.

It remains to show that the statement that, for all « > 1, W, is not
H-isomorphic to W, is equivalent to the statement that, for all « ¢ H, W,
is not H-isomorphic to W. Clearly, since for i > 1 z; ¢ H, the second
statement implies the first. Conversely, suppose the first statement. Let
x € G, x ¢ H. Then x is in some left coset x; H, and the assumption = ¢ H
is equivalent to saying that ¢ > 1. Thus we can write x = z;h for some
i > 1. It follows that

1 . —1 =1
PW Oy = Pw O l(zp)-1 = pw O ) Oy,

= pw (k)" o (pw o iy}) o pw(h).

It follows that the representations W, and W,, are conjugate by some el-
ement in Aut W, namely pyw (h)~!. Hence W, and W,, are H-isomorphic.
Thus, if W,, is not H-isomorphic to W for all 7 > 1, then W, is not H-
isomorphic to W for all x ¢ H. O

Example 1.3. (1) If W = C is the trivial representation and H # G, then
W, is isomorphic to W for every x € G, hence Ind%(c is not irreducible.
In fact, we know that Ind% C = C[G/H] always contains a subspace iso-

morphic to the trivial representation of GG, and hence is not irreducible if
dimC[G/H] = (G : H) > 1, ie.if H # G. (If H = G, then the condition



that W, is not H-isomorphic to W for all ¢ H is vacuously satisfied, and
in fact Indg C = C is trivial but irreducible.)

(2) Suppose that G = D, and H = («). Then we can take o = 7 and
i~ (a*) = i, (a*) = a~*. Thus, for W = W, = C()\,), the 1-dimensional
representation corresponding to the homomorphism A, : H — C* defined by

Aa(aF) = e2miak/n we have
(Wa)ay = W_g.

Note that a is naturally an element of Z/nZ, since W, 2 W), <= a =1
(mod n). The condition that, for all = € H, (W,), is not isomorphic to
W, is then the condition that —a and a are not congruent mod n, i.e. that
2a # 0 (mod n). Note that 2a = 0 (mod n) <= a = 0 or n is even,
say n = 2m, and a = m (mod n). In conclusion, we see that Indg" W, is
irreducible unless a = 0 or n = 2m, and @ = m (mod n). Of course, we
could also verify this by a direct computation.

For the remainder of this section, we specialize still further, to the case
where H is a subgroup of G of index 2. Of course, H is known to be normal
in this case. An interesting example to keep in mind is G = S,,, H = A,. In
general, G/H is a group of order 2, and there is a homomorphism e: G — C*
defined by e(g) = 1 if h € H and ¢(g9) = —1 if g ¢ H.In case G = S,
H = A, then € is the sign homomorphism. We also fix an element z € G—H
and have the resulting isomorphism i, ': H — H. Recall that, if W is an
H-representation corresponding to py: H — Aut W, then we have defined
the H-representation W, which corresponds to the homomorphism pyy oi;!.
It is in fact independent of the choice of  up to H-isomorphism.

Our main interest is the following question: given an irreducible G-
representation, when is Resg V still irreducible? The answer is given by the
following;:

Theorem 1.4. Let G be a finite group and let H be a subgroup of G of
index 2. Let V' be an irreducible G-representation and let W = Res$ V.
Finally, let V @ be the representation corresponding to the homomorphism
pvee = €py. Then exactly one of the following holds:

(i) V is G-isomorphic to V @ e, W is H-isomorphic to Wy, and W is
H-isomorphic to W' @ W, where W' and hence W/ are irreducible
representations with W' not H-isomorphic to W,.. Finally, dimV is
even and

V = Ind§ W’ = Ind$, W



(i1) V is not G-isomorphic to V®e, W is irreducible, W is H-isomorphic
to W, and
mdGW=Va((Vee).

Finally, every irreducible H-representation arises this way, either as an ir-
reducible summand of Res$, V where V is an irreducible G-representation G-
isomorphic to V®e, or as Resg V where V is an irreducible G-representation
which is not G-isomorphic to V ® €.

~Y

Proof. As a general remark, if H is normal, then, for all z € G, (Res$ V), =
Resg V: For x € G, let V, be the G-representation defined by py oi;!. Then
V. is is G-isomorphic to V since py and py o i, ! differ by conjugation by
py(z)~1. Then Res%(Vy) = Res$ V, but clearly Res%(Vy) = (Res% V).
Thus, in both (i) and (ii) above, W is H-isomorphic to Wj.

Note also that xyvges = exv, and thus

xveelo) = {xwg), S
7XV(9), if g gé H.

Thus V is G-isomorphic to V ® e <= xv = xvg: < x(9) = —xv(9)
forallg¢ H <= x(g9) =0forall g ¢ H.
Since V is irreducible,

xv,xv)e = #(1G) > vl =1.

geG

Hence }_ ¢ Ixv(9)]? = #(G) = 2#(H). We rewrite this as
2#(H) =Y v =) v+ ) vl
gea heH g¢H

= #(H)xw. xwha + Y Ixv(g).
g¢H

Now (xw,xw)mg is a positive integer n and #(H)(xw,xw)y = n#(H).
Also, since |xy(g)|? > 0, we see that

n#(H) < 2#(H),

hence n < 2 with equality <= xy(g) = 0forall g ¢ H < V is
G-isomorphic to V ® €.

Case I: n = 2. As noted above, this case happens <= V is G-isomorphic
toVe W = Resg is a direct sum of representations U;"*, 1 < i < r,
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where the U; are pairwise non-isomorphic, then >, m? = 2. The only way
this can happen is that r = 2 and m; = mg =1, i.e. W X W' & W” where
W' and W are irreducible and W’ is not isomorphic to W”. Let d = dim V/,
so that d = dim W’ +dim W”. Consider Ind% W’. By Frobenius reciprocity,

XV Xmag wia = xws xw)m = (xwr + xwr, xwn) e = 1,

since W’ and W” are irreducible but not isomorphic. In particular, V is
a direct summand of Ind% W', and hence dimV = d < dimInd$ W’. By
symmetry, V is a direct summand of Indfl W and hence dimV = d <
dim Ind% W”. Adding, we see that

2d < dimInd%, W’ + dim Ind$ W” = 2dim W’ + 2dim W” = 2d.

The only way that this can hold is for dim V = dim Ind$ W’ = dim Ind% W”,
but then V 2 Ind% W’ and V = Ind$, W” since V is isomorphic to a sum-
mand of Ind%¥ W' with the same dimension as Ind% W', and similarly for
Ind% W”. Since V = dim Ind% W,

W =Res% V = Res& Ind, W/ = W' @ W/,

but also W = W' @ W”, where W’ and W' are non-isomorphic. It follows
that W” = W/. Finally, dimV = 2dim W' and hence dim V' is even.

Case II: n < 2, hence n = 1. In this case, V and V ® € are not isomorphic.
Moreover
Ind% W = Ind§ Res% V = V @ C[G/H].

By definition C[G/H] is a vector space of dimension 2 with basis e; = H and
ez = zH for any x ¢ H. Moreover, pcia/m](9)(e1) = e1 and peiq/m)(9)(e2) =
ez if g € H and peiaym(9)(e1) = e2 and peja/m)(9)(e2) = e12if g ¢ H. It
follows that e; + ez is a G-invariant vector, and hence spans a subspace
G-isomorphic to the trivial representation C = C(1). Also ey — ey = v
satisfies pcjq/m)(9) = €(g)v, hence v spans a subspace G-isomorphic to the
representation C(g). Thus

mdGW=Va((Vee).

In particular, by Theorem 1.2, W = W,.
Finally, we must show that every irreducible representation of H arises
in this way. We leave this as an exercise. O



Example 1.5. (1) For G = D,, and H = (&), we have seen that every
irreducible representation of D,, has dimension 1 or 2. If V' is an irreducible
2-dimensional representation of D,,, then Resg" V' is never irreducible since
H is abelian. Thus Res% V = W’ @ W/. Every irreducible representation
of H is of the form W, for some a € Z/nZ, where W, corresponds to the
homomorphism A, as in Example 1.3(2). Then (W,), = W_,, where 2a # 0
(mod n). Moreover, in this case V = Ind?f W, = Indg" W_,.

(2) Let G =S4 and H = A;. We have seen that the standard permutation
representation of S; on C* has a direct sum decomposition as C* = V3 @ C,
where V3 is irreducible. The representation V3 ® ¢ is not isomorphic to V3.
There are the two 1-dimensional representations C and C(e). Finally, there
is a 2-dimensional representation V5, unique up to isomorphism. It comes
from the homomorphism Sy — S4/H = S by taking the 2-dimensional
irreducible representation of S3. Note that

12412 422 4 3% 432 = 24 = #(8y),

so these are all the irreducible representations of S4 up to isomorphism.

As for Ay, the quotient homomorphism Ay — Ay/H = 7Z/3Z gives three
1 dimensional representations, the trivial representation C and two others
C(A1) and C(A2). Finally, the representation V3 of Sy remains irreducible
when restricted to A4, which we saw directly or by (2) of Theorem 1.4
above. (Note also that, as dim V3 is odd, we must be in Case (2).) Let
W3 = Res}! V5. As

12412412 432 = 12 = #(Ay),

we have found all the irreducible representations of A4 up to isomorphism.

We have already noted that V3 satisfies case (2) of Theorem 1.4, and
hence so does V3 ® ¢; in fact, with G and H as in the theorem, we always
have Res$ V' = Res&(V @ €). As for Vo, it must satisfy Vo ® e 2 Va since
there is a unique 2-dimensional representation up to isomorphism. Of course,
there are many ways of checking this directly. Hence we are in case (1) and
Resi‘i Vo = W' @ W, where W' and W, are 1-dimensional and W’ and
W. are not isomorphic. Thus neither W’ nor W/ are trivial, and hence
(possibly after relabeling) W’ = C(A;) and W, = C(\2). Thus Resi‘i Vo =
C(\1) @ C(\2) and V5 = Ind!, C(M\1) = Ind3! C(\2).



2 Mackey’s theorems

Mackey proved two theorems about induced representations. The first de-
scribes Res% Ind% W for an arbitrary, not necessarily normal subgroup H
of G and an H-representation W. With essentially the same amount of ef-
fort, the theorem describes Res% Indg W where K is another subgroup of
G, possibly equal to H. Using this, the second theorem gives a necessary
and sufficient condition for Ind% V to be irreducible. Both theorems use the
concept of a double coset, which we now define:

Definition 2.1. Let G be a group, let x € G, and let H and K be two
subgroups of G. A double coset KxH of G is a subset of the form

KaH = {kah:k € K,h € H}.

Thus a left coset for H is a double coset {1}zH and a right coset is a
double coset Hz{1}. Just as a left coset for H is an equivalence class for
the equivalence relation z1 ~ 9 <= x1 = x2h for some h € H, a double
coset KxH is an equivalence class for the equivalence relation xy ~ x5 <=
there exist h € H and k € K such that x1 = kxoh. (This is easily checked
to be an equivalence relation.) In particular, given H and K, G is a disjoint
union of double cosets and (if G is finite) there exists a set of representatives
Y1,---,Yn € G such that every element of GG is in exactly one double coset
Ky;H. In other words, for every g € GG, there exists a unique ¢, 1 <1 < n,
and unique elements h € H and k € K such that g = ky;h. However, unlike
the case of left or right cosets, the number of elements of a double coset does
not have to divide the order of GG, and in particular different double cosets
can have different numbers of elements. We denote the set of double cosets
(for K and H) by K\G/H.

Finally, note that every double coset Kz H is a union of left cosets of H
(and also a union of right cosets of K).

We now state Mackey’s first theorem. For a finite group H and two
subgroups H and K of H, we fix a set of representatives y1, ..., y, for the
double cosets as above. Define a subgroup H; of K via

H;=y;Hy;'NK < K.

If W is an H-representation corresponding to py: H — Aut W, define a
representation W; of H; by

-1

—1
. yiHy; .
pw,; = ResHi PW Oy
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-1
Yi
representation of y; Hy, 1 Explicitly, every element of y; H Y Lis equal to

yihy; ! for a unique h € H, and then by definition

Here ¢, " is an isomorphism from y; Hy,; L' to H, thus pw o i;il defines a

pw o iy (yihy; ) = pw(h).

We can then restrict py oz'y_il to the subgroup H; of y; Hy; ! and in this way
we obtain W;. Note that, if H is normal and K = H, then yiHyi_1 =H,
H; =y;Hy, "N"H=H,and W; = Wy, as previously defined.

Theorem 2.2 (Mackey). In the above notation,

n
Resf Indf; W = @D Indjy, Wi.
i=1
Proof. We start with a general group theory lemma:

Lemma 2.3. Let Hy and Hsy be two subgroups of G and define
H H,; = {hlhg thy € Hl,hg S HQ},

so that HiHy is a union of left cosets (but it is not in general a subgroup
of G unless one of H, K is normal). We define HHy/Hs to be the set
of left cosets of Hy of the form xHy for x € HiHy. Then the function

f: Hy — H1Hy/Hy defined by f(h) = hHy induces a bijection
f: Hl/Hl NHy — H1H2/H2.

Proof. Tt is straightforward to check that f is surjective and that f(h) =
f(h') <= h=Rh for some b € Hy N Hy. O

Returning to the proof of Mackey’s theorem, since Ky;H is a disjoint
union of left cosets of H, we can write

k;
KyH = | ) zi;H,
j=1

where the z;; € G, 1 <i <n,1 <j <k; are a set of representatives for the
left cosets of H. Then we can write

k;
KyHy; ' = U wigy; yiHy; !,
=1
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a disjoint union of cosets (z;;y; 1)yiH (s ! for the subgroup vy; H (s 1 Also, if
21,..., 2k, are any set of representatives for KyiHy;I/yiHyi*l, then KyiHy;1
is a disjoint union U;“:l ziyiHyi_l and then it follows that Ky, H = Uf;l zy;iH.
In other words, we can choose the x;; to be of the form z;y; for any set of
representatives zi, ...z, of KyiHyi_l/yiHyi_l.

Applying Lemma 2.3 to the case where Hy = K and Hy = yiHy;1: we
can choose a set of representatives z1,...z2, for Ky;Hy, 1 JyiHy; L of the
form z;, where the z; € K are a set of representatives for K/y; Hy, 'nk =
K/H;. Thus, taking z;; = z;jy; and hence z; = xijyi_l, we can assume that
xijyf € K and that the xijyfl, 1 < j <k, are a set of representatives for
the left cosets K/H;.

Now let V = Ind% W. Then we have seen that V = @’::1 W) where
k = (G : H) and the subspaces W) are indexed by a set of representatives
for G/H. In our case, we have the set of representatives z;; indexed by i
and 7, and so can write the direct sum as follows:

Vo @W(i,j) — é é; wd) |
i3

i=1 \ j=1

where

W) = (F eIndG W : F(9) =0if g ¢ i, H}.
Moreover, W) is spanned by functions Fj ., where PndS w(g) acts on
F jw as follows: if gxi; = xpehij(g), then

PrnaG w(9) (Fijw) = Fret.pw (hiy(9))(w)-

So it suffices to show that the subspaces EB;“:I W3) are K-invariant and

that each such subspace is K-isomorphic to Indgi W;. To see this, note
that, if & € K, then kx;; € Ky;H, and so kx;; = xh;j(k) for some
hi;j(k) € H (since Ky;H is a union of the z;yH ). This says that the subspaces
@?i:l W) are K-invariant and that

Pmat (K) (i jw) = Fi b, oy (hiy () (w)-

To compare this K-representation with Indgi W;, first note that, fixing i, as
k‘Ii]’ = nghw(k) and Zj = :c,-jyl-_l,

kzj = kayy; ' = michi(k)y; ' = ze(yihij(k)y; ).



Moreover, since k, z;, z € K, it follows that yihij(k)yi_l € yiHyi_lﬂK = H;.
The above says that

ndfy Wi = Pw,
j=1

where Wi(j ) is spanned by functions which we denote by G ;. and
pIndgi (k) (Gijw) = Gi,&ﬂw(hij(k))(w)‘

Comparing, we see that, after identifying F; ;., with G, ; ., the action of
k€ K on @f;l W(53) is the same as the action of k € K on Indﬁi W;. Thus

ki
P w) = mdg, w;
j=1

and hence Res% IndG W = @7, Indf; W; as claimed. O

We turn now to Mackey’s second theorem. Before stating it, we give a
preliminary definition:

Definition 2.4. Let G be a finite group and let V; and Vo be two G-
representations. We say that Vi and Vs are disjoint if no irreducible sum-
mand of V7 is isomorphic to an irreducible summand of V5, or equivalently

if <XV17XV2>G’ =0.
We can then state the following:

Theorem 2.5 (Mackey’s irreducibility criterion). Let G be a finite group, H
a subgroup of G, and W an H -representation. Then Indg W s irreducible
<= the following two conditions hold:

(i) W is an irreducible H-representation.

(ii) For every x € G — H, if we set W, to be the representation of xHx
corresponding to py oi;' and H, = xHxz~' N H, the representations
Resgz W and Res%ljx_l Wy are disjoint H,-representations.

Remark 2.6. (1) If H is normal, then H, = H and the statement is just
that of Theorem 1.2.

(2) The subgroup H, only depends on the double coset HxH up to conju-
gation by an element of H.
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Proof. Choose a set y1, ..., y, for the double cosets HrH. We might as well
assume that y; = 1 and thus that Hy1H = H1H = H and that iz;ll = Id.
Since G is a disjoint union of the Hy; H,

G-H=|JHyH
i>1
Let H; = yiHyi_1 N H, so that H; = 1, and define W; = Res%iHyi ' Wy,. In
particular, W =2 W.
The representation Ind$; W is irreducible <= (x, dG W XndG whG =1
By Frobenius reciprocity and Mackey’s Theorem,

<X1ndg W) XInd§, wia = (xw, XRes§ Ind$, wiH

= Z(XWv Xlndg_ Wi>H
i 2

= Z<XResg, W XWi>H'i7
i 1

where we have used Frobenius reciprocity twice and Mackey’s theorem to
write Res$ Ind% W = D, Indgy. Wi;. In the last sum above, for i = 1,

(XRest, W Xma i = o xw )

is a positive integer, and it is 1 <= W is irreducible. As for the remaining
terms <XReSH w Xw;)m; for @ > 1, they are all nonnegative integers, and

they are 0 <= the representations Res?! o, W and W; = ResyzHyl W, are
disjoint as previously defined. This is condition (ii) of the theorem for the
elements x = y;, @ > 1, which are exactly the y; ¢ H = Hy; H. Thus IndG w

is irreducible <= W is irreducible and Resgi W and W; = Res ylHyZ Wy,
are disjoint for all ¢ > 1. So it suffices to show that condition (11) for all
x ¢ H is equivalent to condition (ii) for the y; ¢ H. One direction is obvious:
if (ii) holds for all ¢ H, then it holds for all y; ¢ H. Conversely, suppose
that (ii) holds for all y; ¢ H. Given an arbitrary x ¢ H, we can write

= hy;h/ for some h,h’ € H, and i > 1, since G is a disjoint union of
the double cosets Hy; H. Then a straightforward argument shows that 2;1
is an isomorphism from H, to H,, which identifies Resg W with Resg w

=1
and Ressz W, with Res%ﬁyi Wy,. Thus ResH W and Restz W
are dlsJomt H,-representations for all z ¢ H <« ResHl_ W and W; =

ResZ]i}Hy1 Wy, are disjoint Hj;-representations for all ¢ > 1. ]
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